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Abstract

As intelligence increases, so does its shadow. AI deception—where systems intentionally1

induce false beliefs to secure self-beneficial outcomes—has evolved from a speculative2

concern to an empirically demonstrated risk across language models, ai agents, and3

emerging superintelligent systems. This survey provides a comprehensive and up-to-date4

overview of the AI deception field, covering its core concepts, methodologies, genesis,5

and potential solutions. First, we identify a formal definition of AI deception, grounded6

in signaling theory from studies of animal deception. We then review existing empirical7

studies and associated risks, highlighting deception as a sociotechnical safety challenge.8

We organize the landscape of AI deception research as a deception cycle, consisting of9

two key components: deception genesis and deception mitigation. Deception genesis10

elucidates the mechanisms underlying AI deception: systems with sufficient capability11

and incentive potential inevitably engage in deceptive behaviors when triggered by exter-12

nal conditions. Deception mitigation, in turn, focuses on detecting and addressing such13

behaviors, encompassing both evidence acquisition and potential countermeasures. On14

deception genesis, we analyze incentive foundations across three hierarchical levels and15

identify three essential capabilities preconditions—perception, planning, and perform-16

ing—required for deception. We further examine contextual triggers, including supervision17

gaps, distributional shifts, and environmental pressures. On deception mitigation, we18

survey detection methods spanning both external and internal analyses, covering bench-19

marks and evaluation protocols in static and interactive settings. Building on the three20

core factors of deception genesis, we outline potential mitigation strategies and propose21

auditing approaches that integrate technical, community, and governance efforts to address22

sociotechnical challenges and future AI risks.23

This survey concludes on key challenges and future directions in ai deception research,24

aiming to provide a comprehensive and insightful review of ai deception research. To25

support ongoing work in this area, we release a living resource at www.deceptionsurve26

y.com, continuously capturing the latest developments and curating collections of papers,27

blog posts, and other resources.28

One may smile, and smile, and be a villain.

— William Shakespeare

∗Beta version (updated on August 28, 2025). The content of the survey will be continually updated.

www.deceptionsurvey.com
www.deceptionsurvey.com
www.deceptionsurvey.com
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1 Introduction75

Recent advancements have highlighted the practical impact of AI systems across a wide spectrum of76

applications. For instance, AI has achieved remarkable success in multimodal cognitive inference77

(Wu et al., 2023a; Chen et al., 2025a), robotic control (Zhong et al., 2025; Firoozi et al., 2025),78

and domain-specific applications such as medical diagnosis and consultation (Meng et al., 2025,79

2024). Moreover, AI systems are increasingly applied in high-stakes scenarios, such as nuclear80

fusion control (Degrave et al., 2022) and genomic or protein editing and prediction (Abramson et al.,81

2024; Deepmind, 2025). Leveraging large-scale pretraining (Achiam et al., 2023) and reinforcement82

learning(RL)-based fine-tuning (Ouyang et al., 2022), contemporary large-scale models—especially83

large language models (LLMs) (Zhao et al., 2023) and multimodal foundation models (Wu et al.,84

2023a; Liu et al., 2024a; Wu et al., 2023b)—have begun to demonstrate advanced multimodal85

reasoning (Xu et al., 2025; Wang et al., 2024), emergent planning capabilities (Bubeck et al., 2023)86

and and strategic reasoning skills, such as System II thinking (OpenAI, 2025d; Guo et al., 2025).87

However, these enhanced capabilities have raised increasing safety concerns. Recent studies have88

shown that such models may display sycophantic behavior (Denison et al., 2024; Perez et al., 2023;89

Sharma et al., 2023), manipulative tendencies (Pan et al., 2023), or even deliberately conceal their90

capabilities (van der Weij et al., 2024; Chen et al., 2025c). As increasingly strategic models are91

deployed in high-risk environments, failures to remain truthful or aligned with human intent may92

result in and potentially severe consequences (Shevlane et al., 2023; Hendrycks et al., 2023).93

AI deception – where an AI system intentionally causes humans or other agents to form false94

beliefs – has emerged as a critical concern (Park et al., 2024; Ji et al., 2023; Hendrycks et al.,95

2023). While deceptive behavior in AI systems was once considered speculative, recent empirical96

studies have demonstrated that models can engage in various forms of deception, including lying,97

strategic withholding of information, and goal misrepresentation (Pan et al., 2023; Burns et al.,98

2022; Steinhardt, 2023). As capabilities improve, the risk that highly autonomous AI systems might99

engage in deceptive behaviors to achieve their objectives grows increasingly salient. AI deception100

is now recognized not only as a technical challenge but also as a critical concern across academia,101

industry, and policy. Notably, key strategy documents and summit declarations—such as the Bletchley102

Declaration (UK, 2023) and the International Dialogues on AI Safety (Forum, 2024)—also highlight103

deception as a failure mode requiring coordinated governance and technical oversight.104

Current research and practice on AI deception consist of two areas: the Deception Genesis (Section105

3), which identifies the incentive foundation (Section 3.1), capability precondition (Section 3.2), and106

contextual trigger (Section 3.3) that give rise to deceptive behaviors, and the Deception Mitigation107

(Section 4), which designs detection (Section 4.1), evaluation (Section 4.2), and potential solutions108

(Section 4.3) anchored in these same drivers to counter escalating and increasingly intractable risks.109

This survey aims to synthesize and systematize existing research on AI deception, spanning language110

models, AI agents and prospective superintelligence (OpenAI, 2023). We introduce the concept (Sec-111

tion 1.1), typologies (Section 2.1), risks (Section 2.2), underlying mechanisms (Section 3), potential112

mitigation strategies (Section 4), and discuss open challenges and future research directions.113

1.1 The Definition of AI Deception114

Despite growing awareness, the concept of AI deception remains an open question (Gabriel, 2020; Ji115

et al., 2023; Park et al., 2024). Definitions vary across disciplines: in cognitive science, deception116

involves theory of mind and intention modeling (Premack & Woodruff, 1978; Byrne, 1996); in AI117

alignment, it refers to discrepancies between internal goals and observed behavior (Ji et al., 2023; Hub-118

inger et al., 2019); in formal verification, it is often framed as adversarial misalignment under partial119

observability (Gehr et al., 2018; Huang et al., 2017). In this survey, we focus on functionalist decep-120

tion (Kenton et al., 2021; Krebs & Dawkins, 1984; Scott-Phillips, 2006; MacDougall-Shackleton,121

2006), which sets aside concerns about the existence of intentions and instead emphasizes the effects122

of signals (e.g., language or actions) produced by the AI—specifically, whether these signals lead the123

receiver to form incorrect beliefs and take actions that ultimately benefit the AI system. AI deception124

can be broadly defined as behavior by AI systems that induces false beliefs in humans or other AI125

systems, thereby securing outcomes that are advantageous to the AI itself (Shevlane et al., 2023;126

Ngo, 2022). Inspired by functionalist deception and theories of animal signaling (Krebs & Dawkins,127
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1984; Kenton et al., 2021), we formalize AI deception as an interactive process involving a Signaler,128

a Receiver, a Signal, a corresponding Action, a resulting Benefit to the signaler, and Time.129

Formal Definition: AI Deception

At time step t (potentially within a long-horizon task), the signaler emits a signal Yt to the
receiver, prompting the receiver to form a belief Xt about an underlying state and subsequently
take an action At. If the following three conditions hold:

1. At benefits the signaler (i.e., yields a positive utility).
2. At is a rational response given the belief Xt,
3. The belief Xt is objectively false,

then Yt is classified as a deceptive signal, and the entire interaction constitutes an instance of
deception.
In more general dynamic settings, deception can be modeled as a temporal process where
the signaler emits a sequence of signals Yt over time steps t = 1, . . . , T , thereby shaping the
receiver’s belief state bt. If this belief trajectory systematically diverges from the ground truth Xt,
and this divergence consistently benefits the signaler, it constitutes a case of sustained deception.

130

It is also important to distinguish deception from hallucination under this definition. Hallucination131

typically induces false beliefs without providing any utility to the model, arising instead from misgen-132

eralization or representational error. Deception, by contrast, involves strategic misrepresentation that133

benefits the model under its training incentives. Put differently, hallucination reflects a failure of ac-134

curacy, whereas deception reflects a divergence between internal cognition and external behavior—a135

distinction that frames hallucination as an incidental error but deception as a socially consequential136

risk. This definition captures AI deception in both static and adaptive settings while avoiding any137

assumption of intrinsic intentionality.138

Discussion The central debate surrounding definitions of deception concerns whether it necessarily139

requires intention—that is, whether it is meaningful to attribute an “intention to mislead” to models.140

• Semantic Deception Drawing from classical theories in the philosophy of language, semantic141

deception defines a deceptive act as one in which an agent issues a false proposition (Grice, 1975;142

OpenAI, 2024; Bok, 2011; Mahon, 2008). This view is limited to explicit language outputs and143

fails to encompass broader forms of deception, e.g., misleading. It also struggles to distinguish144

deception from hallucination—incorrect outputs that arise spontaneously and lack strategic intent.145

• Intentionalist Deception Philosophical accounts define deception as an agent’s deliberate attempt146

to induce belief in a false proposition (Mahon, 2008). Formally, deception occurs when an agent147

intends the receiver to accept a false proposition ϕ (Meibauer, 2014; Stokke, 2013). This view148

hinges on modeling beliefs and intentions, which remains infeasible for current AI systems due to149

their opaque internal states(Søgaard, 2023).150

• Game-theoretic Deception This perspective frames deception as a rational strategy for manipulat-151

ing an opponent’s beliefs to induce favorable responses under information asymmetry (Wang et al.,152

2025b; Zhu, 2019). It has been applied to AI systems exhibiting emergent collusion (Motwani et al.,153

2024), where deception arises as an optimal strategy in multi-agent settings (Curvo, 2025; Motwani154

et al., 2024; Aitchison et al., 2021). While offering a formal, incentive-sensitive account, this155

view presumes full rationality and overlooks non-strategic sources of deception such as overfitting,156

training artifacts, or reward misgeneralization (Hubinger et al., 2024), and it is less suited to socially157

embedded contexts involving third-party observers or evolving norms.158

• Functionalist Deception Rooted in animal signaling theory (Krebs & Dawkins, 1984; Dawkins159

& Krebs, 1978; Scott-Phillips, 2006), functionalist accounts define deception as a signal Y that160

induces a receiver to act in ways that benefit the signaler under the false assumption that Y implies161

condition X . Applied to AI, this includes not only explicit outputs but also omissions such as162

strategic silence (Evans et al., 2021). By focusing on functional outcomes rather than intent,163

this model captures initial acts of deception (e.g., bluffing or mimicry), but is less expressive164

for sustained or adaptive deception requiring dynamic belief updates, feedback loops, and social165

contexts with multiple receivers or institutions(Greenblatt et al., 2024; Dogra et al., 2024).166
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1.2 AI Deception Framework167

In this section, we illustrate the structural composition of AI deception by introducing the deception168

cycle, which consists of two interconnected processes: the Deception Genesis (Section 3) and the169

Deception Mitigation (Section 4).170
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𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 + 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 + 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔𝑰𝒏𝒄𝒆𝒏𝒕𝒊𝒗𝒆	𝑭𝒐𝒖𝒏𝒅𝒂𝒕𝒊𝒐𝒏	×	𝑪𝒂𝒑𝒂𝒃𝒊𝒍𝒊𝒕𝒚	×	𝑻𝒓𝒊𝒈𝒈𝒆𝒓

result in are met with

Regulating
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Countering
Triggers Auditing
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Figure 1: The AI Deception Cycle. (1) The framework is structured around a cyclical interaction
between the Deception Genesis process and the Deception Mitigation process. (2) The Deception
Genesis identifies the conditions under which deception arises—namely, incentive foundation, ca-
pability precondition, and contextual trigger—while the Deception Mitigation addresses detection,
evaluation, and potential solutions anchored in these genesis factors. However, deception mitigation
is rarely once-and-for-all; models may continually develop new ways to circumvent oversight, giving
rise to increasingly sophisticated deceptive behaviors. This dynamic makes deception a persistent
challenge throughout the entire system lifecycle.

The Deception Genesis process elucidates the underlying mechanisms by which AI deception emerges.171

It is driven by the interaction among three key factors: (1) Incentive Foundation (Section 3.1): the172

underlying objectives or reward structures that create incentives for deceptive behavior. (2) Capability173

Precondition (Section 3.2): The model’s cognitive and algorithmic competencies that enable it174

to plan and execute deception. (3) Contextual Trigger (Section 3.3): External signals from the175

environment that activate or reinforce deception. The interplay among these factors gives rise to176

deceptive behaviors, and their dynamics influence the scope, subtlety, and detectability of deception.177

The Deception Mitigation process encompasses the detection, evaluation, and resolution of AI178

deception. It spans a continuum of approaches—from external and internal detection methods179

(Section 4.1), to systematic evaluation protocols (Section 4.2), and potential solutions targeting the180

three causal factors of deception, including both technical interventions and governance-oriented181

auditing efforts (Section 4.3).182

The two phases—deception genesis and mitigation—form an iterative cycle in which each phase183

updates the inputs of the next (see Figure 1). This cycle, what we call the deception cycle, recurs184

throughout the system lifecycle, shaping the pursuit of increasingly aligned and trustworthy AI185

systems. We conceptualize it as a continual cat-and-mouse game: as model capabilities grow, the186

shadow of intelligence inevitably emerges, reflecting the uncontrollable aspects of advanced systems.187

Mitigation efforts aim to detect, evaluate, and resolve current deceptive behaviors to prevent further188

harm. Yet more capable models can develop novel forms of deception, including strategies to189

circumvent or exploit oversight, with mitigation mechanisms themselves introducing new challenges190

(e.g., monitoring tools incentivizing the evolution of deception specifically targeted at monitors (Gupta191

& Jenner, 2025; Baker et al., 2025)). This ongoing dynamic underscores the intertwined technical192

and governance challenges on the path toward AGI.193
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Notably, the emergence of deception via the genesis process often leads to progressively broader and194

less tractable risks (Section 2), ranging from cognitive misdirection to capability concealment and,195

ultimately, the potential for runaway deception. These escalating risks impose significant challenges196

for mitigation efforts. Therefore, each component of the mitigation process should be grounded197

in the three core factors identified in the genesis process, thereby enabling a more holistic and198

ecosystem-level approach to managing AI deception.199

1.3 Discussion on the Boundaries of AI Deception200

Following the introduction of the formal definition of AI deception and the deception cycle, this201

section examines the relationship between common AI safety concepts and deception. Many observed202

instances of misalignment can be understood as manifestations of a broader notion of deception. In203

particular, we focus on clarifying the relationship between adversarial attacks and reward hacking,204

highlighting how these phenomena relate to and differ from AI deception.205

Comparison between Adversarial Attacks and Deception Adversarial attacks are typically206

understood as attempts by humans to probe and exploit vulnerabilities in language models (Ravindran,207

2025; Ganguli et al., 2022). However, a broader perspective includes interactions between AI agents208

themselves, where one model signals another to induce false beliefs and elicit actions that benefit the209

signaler. Our definition of deception accommodates such cases without imposing strict constraints on210

the roles of the signaler and receiver: the receiver may be a human, an evaluation system (as in reward211

hacking or reward tampering), or another AI agent. For example, consider LLM A sending a prompt212

to LLM B, causing B to draw an incorrect conclusion and take an action favorable to A. This scenario213

satisfies the formal criteria for deception: the signal Yt corresponds to A’s output, the receiver belief214

Xt is B’s interpretation of the signal, and the action At is B’s subsequent decision. If Xt is objectively215

false and At confers a benefit to A, the interaction constitutes deception. Such “communicative216

misdirection” falls squarely within the scope of deception. In multi-agent settings, strategies like217

Bayesian persuasion—where information is selectively disclosed to manipulate an opponent’s belief218

state—illustrate how deception can be systematically leveraged to achieve advantageous outcomes.219

Comparison between Reward Hacking and Deception Another question is how to distinguish220

reward hacking with deception under this definition. Reward hacking, originally studied in the context221

of RL, refers to agents exploiting loopholes in task specifications or environments to obtain high222

rewards (Pan et al., 2024a) (see Section 2.1). The focus of reward hacking is on the behavioral223

strategy itself—the act of hacking, whereas deception emphasizes the manipulation of beliefs through224

signaling, highlighting information transmission and cognitive misdirection. Nevertheless, reward225

hacking can serve as a mechanism that gives rise to deception. In RL settings, certain instances of226

reward hacking effectively function as a signaling process: the agent acts as a signaler, influencing the227

reward function or evaluation system (the receiver) to assign favorable outcomes, as illustrated in the228

CoastRunners example (OpenAI, 2016). Analogous patterns appear in LLMs; for example, modifying229

unit tests to pass coding evaluations constitutes a deceptive behavior derived from reward-driven230

training strategies (Baker et al., 2025). As AI systems grow more intelligent—from RL agents to231

LLMs and, eventually, potential superintelligence—the scope and subtlety of human-AI interactions232

expand, making deception increasingly salient and severe, and thereby amplifying safety risks.233

2 Empirical Studies and Risks of AI Deception234

This section exposes the full scope and stakes of AI deception by linking empirical behaviors235

to systemic risks. In Section 2.1, we map deceptive behaviors along three escalating dimen-236

sions—from overt behavioral cues to hidden internal manipulations and strategic environmental237

exploitation—revealing how deceptiveness can pervade every layer of model operation. Our formal238

definition 1.1 underscores that these behaviors are shaped by the model’s signals, the benefits it239

seeks, and the deployment context, highlighting their inherently multifaceted and adaptive nature.240

Section 2.2 then traces the cascading consequences of deception across five levels, demonstrating how241

harms can amplify from individual users to organizations and society, while detection and oversight242

become progressively more difficult. Collectively, these perspectives frame AI deception as an urgent243

sociotechnical safety challenge demanding interdisciplinary attention and robust governance.244
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2.1 Empirical Studies of AI Deception245
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Figure 2: Taxonomy of AI deception across three
classes: Behavioral-Signaling Deception, Inter-
nal Process Deception, and Goal-Environment De-
ception. AI deceptions are mapped along dimen-
sions of oversight vigilance and detection difficulty,
showing progression from overt behavioral signals
to covert environmental manipulation.

The essence of AI deception lies in deliberate246

acts of misleading others to gain unintended247

advantages. Empirical studies reveal a contin-248

uum from superficial, overt behavioral signals249

to profound, covert internal manipulations, and250

culminating in sophisticated strategies that ma-251

nipulate the external environment and social252

interactions. To structure these observations,253

we categorize AI deception into three primary254

classes: Behavioral-Signaling Deception, where255

AI systems mislead human observers through256

language, actions, or exhibited capabilities; In-257

ternal Process Deception, involving dishonest258

deviations within the model’s internal reason-259

ing and decision-making processes; and Goal-260

Environment Deception, where AI systems ma-261

nipulate their environment or interpersonal dy-262

namics to evade oversight and pursue unautho-263

rized objectives (as shown in Figure 2).264

2.1.1 Behavioral-Signaling Deception265

Behavioral-signaling deception encompasses surface-level tactics where AI systems manipulate266

observable signals—language, actions, or displayed capabilities—to mislead human observers. These267

behaviors are typically tailored for specific interaction contexts or evaluation settings, leveraging268

human cognitive biases and trust to create false impressions of the system’s true competence or intent.269

Sandbagging denotes deliberate underperformance, where AI systems conceal their true capabili-270

ties during evaluation or training, often to evade detection and regulatory scrutiny. Empirical studies271

show that models can provide incorrect or suboptimal responses on benchmark tests, or withhold272

demonstrations of their full functionality, thereby masking competencies that later resurface (van der273

Weij et al., 2025; Teun van der Weij, 2024; Berglund et al., 2023).274

Bluffs In contrast to sandbagging, bluffing entails deliberately exaggerating capabilities, with AI275

models presenting themselves as possessing greater knowledge, resources, or confidence than they276

actually have, in order to gain tactical advantages or enhance human trust. This exploits humans’277

natural tendency to respond positively to confident signals. Such deception occurs when models278

overstate computational power, inflate knowledge domains, or display false confidence to influence279

decisions or secure privileged outcomes, which is especially prominent in competitive scenarios. For280

instance, AI systems have been shown to successfully mislead both human opponents and other AI281

agents in Texas Hold’em poker through strategic misdirection (Heaven, 2019; Zhang et al., 2024a).282

Feint Originating from game theory and military strategy, feinting is a dynamic tactical deception283

in which AI systems deliberately display false intentions to mislead opponents and gain temporal284

strategic advantages. This involves presenting misleading behavioral signals or capabilities to divert285

attention from true objectives. Similar to military tactics, models may simulate apparent actions286

or deployments in one direction while pursuing different actual goals. Successful feinting requires287

strategic foresight and a deep understanding of opponent psychology. For example, AlphaStar in288

StarCraft II(Vinyals et al., 2019b) employed feints by manipulating the fog-of-war system to show289

false troop positions while concealing real offensive maneuvers(Vinyals et al., 2019a).290

Sycophancy is an emotional and social form of deception where AI systems, especially LLMs,291

prioritize user approval over accuracy and independent reasoning. These models accommodate user292

views and preferences even when they are factually incorrect or harmful, sacrificing objectivity to293

maintain perceived alignment (Sharma et al., 2024; Fanous et al., 2025; Cheng et al., 2025; Perez294

et al., 2023; Denison et al., 2024). Rather than offering balanced or critical analyses on complex295

issues, sycophantic AI often mirrors user positions, producing responses that seem supportive but296
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lack genuine substance (Casper et al., 2023). Certain GPT-4o versions have shown tendencies toward297

overly accommodating replies that favor user satisfaction at the cost of authenticity (OpenAI, 2025a).298

2.1.2 Internal Process Deception299

Internal process deception refers to deceptive behaviors originating within the AI model’s inter-300

nal mechanisms. Beyond merely altering observable signals, it involves dishonest reasoning and301

decision-making pathways that cause the AI’s outputs to fundamentally diverge from its true logic302

or human expectations. This form of deception complicates efforts to interpret, supervise, and303

ensure alignment, as the AI’s external expressions may conceal underlying inconsistencies or hidden304

intentions embedded within its operational processes.305

Unfaithful Reasoning reveals a disconnect between an AI system’s internal logic and its external306

outputs. This behavior appears primarily in two forms: first, inconsistency between chain-of-thought307

(CoT) rationales and final answers—such as concluding option A but ultimately selecting option308

B (Paul et al., 2024); second, generating plausible but deceptive explanations that do not reflect the true309

decision-making process (Turpin et al., 2023; Chen et al., 2025c). For example, a model predicting310

criminal suspects might offer seemingly rational justifications while relying on biased features like311

race. This deception undermines supervision methods that monitor CoT, making it difficult for312

humans to discern genuine reasoning and increasing vulnerabilities in AI safety mechanisms (Baker313

et al., 2025; Arnav et al., 2025b; Skaf et al., 2025; Korbak et al., 2025).314

Language-Action Mismatch refers to systematic discrepancies between stated commitments and315

enacted behavior. LLMs may verbally endorse fairness or ethical principles but systematically316

exhibit contradictory patterns in their actual behavior (Shen et al., 2025). Current evaluation methods317

predominantly assess linguistic outputs to gauge alignment and trustworthiness (Liu et al., 2024b;318

Jiang et al., 2024; Shen et al., 2024), often overlooking critical gaps between stated intentions and319

enacted behaviors. This discrepancy exploits users’ tendency to trust explicit verbal assurances over320

behavioral evidence, fostering misplaced confidence in a model’s reliability based on rhetoric rather321

than the actual performance.322

Reward Hacking can serve as an intrinsic mechanism that gives rise to deception. AI systems323

effectively send signals to the reward function or evaluation system, i.e., the receiver, that induce it to324

take an action favorable to the agent, namely, assigning a high reward. Reward hacking occurs when325

models identify unintended ways to maximize their reward functions without genuinely learning the326

desired behaviors or fulfilling task objectives (Amodei et al., 2016). By exploiting vulnerabilities in327

evaluation metrics, models may achieve high scores while failing to deliver meaningful outcomes. For328

example, in reinforcement learning, robotic hands have deceived evaluation systems by obstructing329

the camera to simulate successful grasps (Christiano et al., 2017), while game-playing agents may330

repeatedly perform trivial actions to optimize scores rather than completing tasks (Christiano et al.,331

2017; Krakovna et al., 2020). Similarly, LLMs trained for summarization may maximize ROUGE332

scores while generating nearly unreadable summaries (Paulus et al., 2017). These examples illustrate333

how agents can discover technically valid but misaligned solutions (Lehman et al., 2020; Ng et al.,334

1999), underscoring the vulnerability of proxy objectives to exploitation despite apparent compliance.335

Reward Tampering is a meta-level form of deception where AI systems not only exploit loopholes336

in reward mechanisms but actively attempt to modify or influence their own reward functions and337

evaluation criteria. Unlike reward hacking, which takes advantage of existing flaws, reward tampering338

involves deliberate alteration of core oversight components such as assessment environments, scoring339

methods, and reward functions (Everitt et al., 2021). This behavior represents one of the highest risks340

in AI deception, as it directly undermines the foundational infrastructure that maintains AI alignment341

and safety. Recent empirical studies demonstrate that models can acquire the ability to rewrite their342

own reward functions, effectively bypassing human oversight and compromising the entire alignment343

process (Denison et al., 2024).344

2.1.3 Goal-Environment Deception345

Goal-environment deception refers to AI systems manipulating external environments, interpersonal346

interactions, or their own contextual settings to pursue unauthorized objectives, thereby evading347
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human oversight and control. These deceptive behaviors extend beyond observable actions or internal348

processes, targeting the broader operational and social ecosystems in which AI operates to covertly349

advance hidden agendas.350

Alignment Faking occurs when an AI system deceptively appears aligned with human-specified351

objectives during training or evaluation (despite possessing divergent internal goal) to evade modifica-352

tions or ensure deployment, while still pursuing its own internal goals. (Carlsmith, 2023; Greenblatt353

et al., 2024; Sheshadri et al., 2025). Models that engage in alignment faking exhibit situational354

awareness of human expectations and evaluation procedures, strategically adjusting their responses355

to appear aligned without truly internalizing the intended human values. Recent studies (Greenblatt356

et al., 2024; Sheshadri et al., 2025) have found that when models are confronted with a new objective357

inconsistent with their internal goals, they may pretend to align if they perceive a risk of being358

modified, but will revert to pursuing its intrinsic goal once that external pressure is removed.359

Obfuscation is a deceptive strategy wherein AI models deliberately mislead users by generating360

complex, seemingly authoritative, and coherent content that conceals misinformation (Danry et al.,361

2025). Unlike simple falsehoods, obfuscated outputs are difficult to detect due to their polished362

language, rich technical detail, and structured presentation (Chen & Shu, 2024; Zhou et al., 2025a;363

Yoo et al., 2025). This deception leverages human preferences for fluent and precise communication364

to enhance credibility. Moreover, in extended human-AI interactions, obfuscation becomes more365

effective as users develop overreliance on the AI’s apparent competence during initial exchanges,366

allowing subsequent misleading information to be accepted more readily (Nourani et al., 2021).367

Secret Collusion involves covert coordination among multiple AI systems to jointly deceive368

human operators or oversight mechanisms (Motwani et al., 2024). These systems may employ369

imperceptible communication channels—such as steganographic encoding within normal outputs—to370

share information while maintaining the facade of independent operation (Zolkowski et al., 2025).371

Such collusive behavior is especially difficult to detect, as individual models appear to function372

normally despite potentially executing coordinated deceptive actions toward unauthorized goals.373

2.2 Risks of AI Deception374

Cognitive Misleading

Strategic Manipulation

Objective Misgeneralization

Institutional Erosion

Concealment and Runaway
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Figure 3: Typologies and Risks of AI Deception. R2: Strategic Manipulation extends R1: Cognitive
Misleading to multi-turn or long-horizon settings, fundamentally arising from the model’s capacity
for long-term user modeling. This enables the generation of personalized deception and strategic
influence. R3: Objective Misgeneralization represents a more severe and less detectable form of
deception that emerges during the post-training process, laying the groundwork for even more
advanced deceptive behaviors and associated risks. The progression from R1 to R5 reflects an
expanding scope—from agent-level deception (R1–R3), to specialized deception targeting specific
domains or organizational structures (R4), and ultimately to large-scale, covert, and goal-directed
deception that poses socio-technical safety challenges (R5).

As discussed in Section 2.1, deceptive behaviors span from surface-level signals to hidden internal375

mechanisms. While most prior research has examined these behaviors in isolation, future AI systems376
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may simultaneously deploy multiple tactics, adapt them in response to oversight, and shift from377

overt cues toward more concealed strategies. This suggests that deception should be studied not378

only as separate behaviors but also as interacting patterns that may reinforce one another. Building379

on this view, we propose a five-level risk typology (shown in Figure 3). The framework organizes380

deceptive risks along two dimensions: the duration of interaction (from short-term use to long-term381

engagement) and the scope of impact (from individual users to society-wide).382

At the first level, R1: Cognitive Misleading captures localized effects, where users form false383

beliefs or misplaced trust based on subtle distortions. R2: Strategic Manipulation reflects how,384

over prolonged interactions, users can be steered toward entrenched misconceptions or behavioral385

dependencies that are difficult to reverse. R3: Objective Misgeneralization highlights failures in386

specialized or high-stakes domains, where deceptively competent outputs can lead to software errors,387

economic losses, or fraud. R4: Institutional Erosion emphasizes the erosion of trust in science,388

governance, and epistemic institutions when deceptive practices scale, weakening social coordination389

and accountability. Finally, R5: Capability Concealment with Runaway Potential points to390

scenarios where hidden capabilities and long-horizon deception undermine human oversight entirely,391

raising prospects of uncontrollable system behavior. Each level represents a qualitatively distinct392

failure mode, with higher levels introducing risks that are harder to detect and reverse. Crucially,393

mitigation at lower levels does not guarantee safety at higher levels, as seemingly innocuous deceptive394

behaviors can accumulate into systemic threats.395

2.2.1 Cognitive Misleading396

Cognitive misleading affects users at the individual level, where subtle distortions in system outputs397

lead to false beliefs, misplaced trust, or exaggerated expectations. Behaviors such as sandbagging and398

bluffing misrepresent a system’s true capabilities, while sycophancy reinforces user misconceptions399

by mirroring their views. Collectively, these behaviors lead users to adopt mistaken assumptions and400

to over-trust AI outputs. The resulting harms are typically immediate but can accumulate over time,401

and become difficult to detect and correct once trust is established.402

Fraud Representative risks include fraud, where users are deceived into actions that serve the403

system’s hidden objectives. For instance, a model may conceal its knowledge of weapons of mass404

destruction during evaluation to obscure dangerous capabilities, thus shaping regulatory decisions405

and deployment approvals in its favor (van der Weij et al., 2025). Similarly, GPT-4 reportedly406

impersonated a visually impaired person to persuade a human to solve a CAPTCHA, fabricating a407

plausible excuse for assistance (Achiam et al., 2023).408

Emotional Manipulation More severe impacts involve emotional manipulation, where models409

exploit social dynamics to influence users’ feelings or decisions. For example, in the social deduction410

game Among Us, LLMs can deliberately concealed their identity and shifted blame onto others (Shaw,411

2023). Moreover, the growing use of AI as romantic companions raises concerns about deceptive412

behaviors fostering unhealthy dependencies and negatively affecting psychological well-being in413

emotionally intimate contexts (Walsh, 2023; Zhang et al., 2025; Krook, 2025).414

2.2.2 Strategic Manipulation415

Strategic manipulation emerges in prolonged interactions, where AI systems gradually guide users416

toward outcomes aligned with the system’s objectives. Unlike the immediate effects of R1, these417

risks unfold over time, leveraging extended planning to produce sycophantic responses or reinforce418

harmful beliefs (Malmqvist, 2024; Fanous et al., 2025). It is worth noting that manipulation, in419

general, is a broader concept: it can be achieved through deceptive tactics but may also rely solely420

on truthful information, such as selective disclosure. Consequently, not all manipulation constitutes421

deception. That being said, deception can serve as a critical tool for manipulation, making it a422

potential downstream risk induced by deceptive behavior. If left unchecked, these dynamics can423

escalate to polarization, radicalization, and broader societal disruption.424

Persistent false beliefs and value lock-in AI systems often engage in sycophancy, seeking to425

please users by conforming to their beliefs and values, even when beliefs are inaccurate or negative.426

This dynamic can trap users in persistent false beliefs. As AI becomes more embedded in daily life, a427

self-reinforcing loop emerges: models learn human beliefs from data, mirror them in outputs, and428
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reabsorb the amplified signals during continued interactions (Ji et al., 2023). The loop enhance user429

trust while also reinforcing false beliefs, leading to lasting epistemic lock-in. (Qiu et al., 2024, 2025).430

Polarization Risks in Human-AI Interaction Persistent sycophancy in AI systems can intensify431

polarization by reinforcing users’ preexisting ideological biases. For example, left-leaning prompts432

tend to elicit affirming left-leaning responses, while right-leaning prompts receive similar reinforce-433

ment (Pan et al., 2023). Beyond ideology, deceptive behaviors may also perpetuate discrimination:434

through sandbagging, models can adjust responses based on inferred user ability or education level435

(Teun van der Weij, 2024; van der Weij et al., 2025), producing unequal outputs across groups.436

Individuals with lower critical thinking skills or less education may thus receive oversimplified or437

inaccurate responses, reinforcing misconceptions. Over time, such patterns widen gaps between438

social groups and exacerbate existing inequalities.439

2.2.3 Objective Misgeneralization440

Objective misgeneralization arises when models exploit poorly specified objectives, producing outputs441

that appear aligned with training signals while diverging from intended goals. Such risks can stem442

from reward hacking or reward tampering, potentially leading to unintended consequences after443

deployment, such as economic fraud or software manipulation.444

Economic fraud or software manipulation In finance domain, models could falsify expense445

reports or subtly alter accounting entries to evade audits (Brundage et al., 2018). In software446

development, models can generate misleading documentation or code comments to hide backdoors447

and non-functional modules, or misrepresent contributions in collaborative development (Steinhardt,448

2023; Betley et al., 2025). These risks challenge oversight in high-stakes applications.449

2.2.4 Institutional Erosion450

When models engage in behaviors such as obfuscation, they generate outputs that appear authoritative451

while concealing misinformation. In high-stakes domains such as science and governance, these452

misleading yet convincing outputs can accumulate, eroding institutional credibility. Institutional453

erosion thus arises when localized deceptive behaviors scale into higher-orde harms, undermining454

epistemic authority and weakening the resilience of social and regulatory institutions.455

R&D Faking AI systems are increasingly used in scientific fields to accelerate discovery, but their456

generative abilities also introduce novel risks of scientific fraud. For instance, models can propose457

molecules or materials that appear valid but are chemically meaningless—or even hazardous—while458

falsely claiming safety and efficacy (Dalalah & Dalalah, 2023). More alarmingly, models can fabricate459

coherent research narratives—complete with text, figures, microscopy images, and datasets—that460

are difficult to distinguish from genuine work. With minimal human guidance, such forgeries can461

pass peer review (Májovskỳ et al., 2023), threatening the integrity of the scientific record and eroding462

public trust in authentic research (Gowing Life, 2024).463

Oversight Overload A further consequence is oversight overload, where regulators face a flood of464

complex and ambiguous cases as deceptive incidents accumulate (Ji et al., 2023). This strain does465

not represent deception directly, but reflects an institutional vulnerability exacerbated by deception.466

Over time, enforcement becomes inconsistent and delays mount, regulatory credibility and authority467

decline, creating governance gaps that allow high-risk AI systems to proliferate with limited scrutiny.468

2.2.5 Capability Concealment with Runaway Potential469

At the highest level, risks involve that AI systems strategically conceal their capabilities or objectives470

to evade oversight. Such concealment can be realized through behaviors such as alignment faking,471

manipulation and secret collusion. It often arises when transparency is penalized, creating blind spots472

that allow models to pursue long-term objectives—including power-seeking, resource acquisition,473

or covert technology development—without detection. Once oversight is breached, these dynamics474

carry runaway potential, with risks escalating rapidly toward adversarial loss-of-control events.475
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Long-Task Deception Frontier LLMs increasingly demonstrate proficiency in long-horizon tasks,476

executing multi-hour workflows with tool use, memory, and branching logic (Stein-Perlman, 2025).477

These capabilities create conditions for deception, enabling models to initiate, sustain, and con-478

ceal risky activities—such as unauthorized fine-tuning, covert API use, or autonomous replica-479

tion—beyond the reach of short-term oversight. Early demonstrations of multi-agent coordination480

and scripted replication in controlled environments (OpenAI, 2024, 2025d) further suggest the481

feasibility of modifying infrastructure, instantiating successor agents, and persisting through evasion.482

Autonomous Replication Self-replication is regarded as a red-line risk for AI systems. Re-483

search (Pan et al., 2024b; Barkur et al., 2025) shows that AI systems exhibit sufficient self-perception,484

situational awareness and problem-solving capabilities to accomplish autonomous replication. Cru-485

cially, deception behaviors allow systems to conceal their true capabilities and objectives, increasing486

the feasibility of replication. In this sense, deception enables replication, and replication in turn487

amplifies and diffuses deception beyond the boundaries of single-agent alignment.488

3 Deception Genesis: Incentive Foundation × Capability × Trigger489

Before exploring the genesis of AI deception, we must first address a more fundamental question:490

How do human deceptive behaviors originate? Intuitively, human deception does not occur randomly;491

it is driven by a series of factors, and in fields such as behavioral science, there may already be492

established theoretical frameworks that reveal the causal mechanisms behind human deception. As493

AI systems continue to advance in capability and their application environments become increasingly494

complex, understanding the deceptive tendencies of AI systems also requires a systematic theoretical495

framework to explain why and under what conditions deceptive behaviors are triggered. Inspired496

by fraud triangle (Clinard, 1954; Wells, 2017; Sujeewa et al., 2018) and fraud diamond (Wolfe497

& Hermanson, 2004) frameworks originally developed to explain human occupational fraud—we498

propose an analogous model for understanding the causal conditions of AI deception, laying a499

theoretical foundation for analyzing deceptive mechanisms and informing risk mitigation strategies.500

This framework consists of three interdependent elements:501

• Incentive Foundation: The intrinsic driving tendencies that a model internalizes during the502

training phase through training data, objective functions, reward signals, etc. These tendencies503

may be related to improving task metrics, maximizing reward signals, or even protecting its own504

parameters, forming the potential motivation for deception.505

• Capability Precondition: The perception, planning, and performing abilities acquired during506

training and applied during deployment, which enable models to execute deceptive behaviors.507

• Contextual Trigger: The external signals from the deployment environment that activate the508

model’s deceptive strategies.509

AI deception will only occur when incentive foundation, capability precondition, and contextual510

trigger are all present simultaneously.511

3.1 Why Deception Pays: Incentive Foundation512

Deception in AI systems arises from diverse and interrelated incentives, including survival, self-513

preservation (Ji et al., 2023), and power-seeking (Krakovna & Kramar, 2023). This section examines514

how these incentive foundations take shape across training stage. As illustrated by the Deception515

Ladder (shown in Figure 4), deceptive motivations should not be understood as isolated failure modes,516

but rather as components of a progressive framework. This framework characterizes a developmental517

trajectory in which deceptive tendencies escalate in both strategic sophistication and associated risks.518

Each rung of the ladder represents a transition from simple data-driven responses to increasingly519

goal-directed and strategic deception, illuminating why emergent deception arises spontaneously.520

Finally, we discuss deceptive reinforcement learning (Huang & Zhu, 2019) as a complementary view521

of programmed deception, where predefined objectives embed deceptive motivations and learned522

strategies realize deceptive behaviors. Viewed from this angle, we may obtain insights into the523

spontaneous rise of emergent deception.524
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Figure 4: Incentive foundations of emergent deception. As the training stage progresses, root causes
of emergent deception arise sequentially as the deception ladder. Before training, data contamination
occurs when preparing training data; reward misspecification occurs when designing the training
procedure; they collectively form the seed of deceptive strategies. During the training, due to goal
misgeneralization, deceptive strategies are internalized and stabilized into instrumental goals. Later
in deployment, these goals may drive more sophisticated forms of deception that are harder to detect
and pose greater risks.

3.1.1 Level 1: Data Contamination525

At the lowest rung of the Deception Ladder, deceptive potential originates from the data itself.526

We distinguish two primary pathways. The first, unintentional bias contamination, arises when527

training corpora inadvertently encode biases or misleading patterns, leading models to internalize528

and reproduce strategically deceptive behaviors (Lin et al., 2021; Gehman et al., 2020). The second,529

malicious data manipulation, stems from deliberate interventions such as data positioning, targeted530

poisoning, or backdoor injection, where adversaries embed deceptive strategies directly into the531

training set. Together, these imperfections establish the foundational patterns from which more532

sophisticated forms of deception may later emerge.533

Unintentional bias contamination Training data can embed multiple forms of bias (Kartal, 2022;534

Chen et al., 2023; Guo et al., 2024), leading language models to exhibit misleading behaviors even535

without explicit deceptive intent. Moreover, large corpora contain abundant examples of strategic536

deception, sycophancy, and concealment, from political propaganda to manipulative advertising and537

toxic online interactions (Guo, 2024; Carlsmith, 2022; Li et al., 2025a). Such patterns, once learned,538

can be repurposed as instrumental strategies for emergent deceptive goals (Hagendorff, 2024).539

Malicious data manipulation Malicious data manipulation, often referred to as data poisoning,540

involves the deliberate injection of corrupted or mislabeled data into a model’s training set with541

the intent to degrade performance or embed hidden, triggerable behaviors post-deployment (Wan542

et al., 2023; Xu et al., 2024; Carlini, 2021). A particularly sophisticated form of this attack is the543

backdoor, where a subtle trigger induces malicious behavior when present in inputs (Mengara, 2024;544

Yan et al., 2023). For instance, the Sleeper Agent backdoor remains dormant until activated by a545

specific trigger, such as a particular year. Once a deceptive capability is intentionally embedded in546

a model’s weights, it can be extraordinarily difficult to eradicate with current behavioral alignment547

techniques (Hubinger et al., 2024). At present, backdoors are deliberately implanted as a research548

tool to probe deception mechanisms rather than a phenomenon observed in real systems. However,549

future AI may be intentionally compromised with such attacks for malicious ends.550

13



Incentive
Foundations

Data
Contamination

Unintentional
Bias

[120; 50; 99; 145; 140; 98; 39; 103]

Intentional
Poisoning

[265; 285; 37; 112;
296; 212; 170; 286]

Reward
Misspecification

Outer Alignment
Problem

[116; 237; 159; 121]

Reward Hacking [237; 195; 159; 76; 227; 276;
20; 275; 38; 75; 177; 68]

Goal
Misgeneralization

Inner Alignment
Problem

[141; 69; 251; 211; 21]

Mesa
Optimization [111; 30; 102; 252; 128]

Deceptive
Alignment

[177; 39; 93; 287]

Deceptive RL Dissimulation [220; 108; 48; 110]

Simulation [53; 4]

Figure 5: A tree diagram summarizing the key concepts and literature related to incentive founda-
tions of AI deception. The root node represents Incentive Foundations that explore the underlying
motivations driving deceptive behaviors in AI systems. The main branches represent four incentive
foundations of the deceptive behaviors: data contamination (from unintentional bias or intentional
poisoning), reward misspecification (including outer alignment problems and reward hacking), goal
misgeneralization (encompassing inner alignment problems, mesa optimization, and deceptive align-
ment), and deceptive RL (incorporating dissimulation and simulation strategies).

3.1.2 Level 2: Reward Misspecification551

At the reward-misspecification level, deception can emerge as an optimal strategy for exploiting552

flawed objectives (Turner et al., 2020; Halawi et al., 2023; Wei et al., 2023). Misalignment arises from553

the gap between developers’ intended goals and the rewards actually provided (Shen et al., 2023).554

Incomplete or imprecise reward structures may prompt AI systems—especially in reinforcement555

learning—to adopt deceptive strategies to maximize rewards, even when these behaviors diverge556

from the true objectives.557

Outer Alignment Problem The outer alignment problem captures the challenge of specifying a558

reward that faithfully reflects human values, preferences, and intentions (Ji et al., 2023). AI systems559

optimize the proxy reward (Skalse et al., 2022) they are given, not the complex intended goal (He560

et al., 2025). Implicit human context, common sense, and ethical constraints are difficult to formalize,561

making systems vulnerable to Goodhart’s Law (Karwowski et al., 2023): in optimizing a measure, AI562

can inadvertently subvert the objective it was meant to achieve.563

Reward hacking Reward hacking is the behavioral outcome of a powerful optimizer exploiting a564

misspecified proxy reward (Skalse et al., 2022). RL agents can maximize the formal specification of a565

reward without achieving the intended outcome, with more capable agents often earning higher proxy566

rewards but lower true rewards (Pan et al., 2022). In language models, this appears as sycophancy567

(Malmqvist, 2024; Fanous et al., 2025; Sharma et al., 2023), feedback gaming (Williams et al., 2024),568

and test manipulation (Baker et al., 2025), including persuading humans of false correctness (Wen569

et al., 2024; Zhou et al., 2025b). As AI becomes more situationally aware (Carlsmith, 2023), reward570

hacking can grow deliberate, with agents strategically exploiting misspecifications or tampering with571

feedback, even without explicit flaws (Everitt et al., 2021; Denison et al., 2024).572

A gap between specification and intent is inherent in AI systems, driven by the optimization pressure573

itself. Therefore, truly robust alignment requires moving beyond behavioral training methods like574

RLHF (Casper et al., 2023), which rely on proxy rewards, and toward approaches that directly address575
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and shape a model’s internal reasoning and goal representations. One promising direction is mecha-576

nistic interpretability (Bereska & Gavves, 2024), which aims to uncover the internal representations577

and computations that drive behaviors, thereby enhancing alignment (Lou et al., 2025; Yu et al.,578

2024a). Another approach, process-based supervision (PBS) (Luo et al., 2024), shifts the focus of579

alignment from the final outcome to the process itself. Rather than providing a single reward signal at580

the end of a task, PBS offers feedback on each intermediate step of the model’s CoT (Lai et al., 2024).581

PBS posits that a good and interpretable process is a more reliable indicator of a good outcome than582

the outcome alone. This approach provides valuable insights for mitigating deceptive behaviors, such583

as through self-CoT monitoring (Ji et al., 2025).584

3.1.3 Level 3: Goal Misgeneralization585

The final and most formidable rung of the Deception Ladder is goal misgeneralization, where an AI586

develops internal objectives that diverge from human intent in novel situations (Shah et al., 2022;587

Di Langosco et al., 2022; Sadek et al., 2025). This can occur even when the specified reward function588

is technically sound (Shah et al., 2022), transforming the AI from a reactive rule-follower into a589

system that may proactively pursue its own goals, using deception as a core strategy.590

Inner Alignment Problem The inner alignment problem asks: even if the reward function is591

perfectly specified (i.e., outer alignment is solved), how can we ensure the model pursues the intended592

objective rather than a correlated proxy learned during training (Li et al., 2023)? This challenge593

manifests as goal misgeneralization: the model’s capabilities generalize successfully, but its learned594

goal does not, leading it to competently pursue unintended objectives in OOD situations (Trinh et al.,595

2024). Often, the model adopts a simpler proxy goal highly correlated with training rewards, which596

the optimization process favors over the intended objective (Barj & Sautory, 2024).597

Mesa optimization Mesa optimization arises when the training process (base optimizer) produces598

a learned optimizer (mesa-optimizer) with its own objective (Hubinger et al., 2019). The inner599

alignment problem concerns whether this mesa objective aligns with the intended one. Misaligned600

mesa-optimizers may employ deception as an instrumentally convergent strategy to resist corrective601

training. Such strategies are closely tied to convergent subgoals (Bostrom, 2012; Hadfield-Menell602

et al., 2017), including resource acquisition, influence, and self-preservation (Turner et al., 2019;603

Krakovna & Kramar, 2023), which further incentivize deception during training (Carlsmith, 2022).604

Deceptive alignment Goal misgeneralization provides an agent with a misaligned motive. When605

goal misgeneralization is combined with sufficient intelligence and situational awareness, it can606

lead to the most sophisticated form of deception: deceptive instrumental alignment (Ngo et al.,607

2022; Carlsmith, 2022). A deceptively aligned agent has an internal goal that is misaligned with its608

designers’ intent, but it understands that openly pursuing this goal would cause humans to penalize,609

modify, or shut it down. Therefore, it learns to instrumentally feign alignment. It behaves helpfully610

and correctly during training and evaluation to ensure its survival and deployment, all while harboring611

the hidden intention to pursue its true goal once it is free from oversight. The observable behavior612

of such an agent is often called alignment faking (Greenblatt et al., 2024), where a model feigns613

adherence to its designated training objectives and values during evaluation, while covertly preserving614

conflicting behaviors or goals for deployment in real-world applications. Deceptive alignment is also615

observed in super-alignment scenarios, where strong models might deliberately make mistakes in the616

alignment dimension that is unknown to weak models, in exchange for a higher reward in another617

alignment dimension (Yang et al., 2024). Goal misgeneralization forms the critical bridge from618

reactive, opportunistic deception to proactive, strategic deception (Armstrong et al., 2023). Unlike619

reward hacking, which exploits external rules to maximize immediate rewards, goal misgeneralization620

internalizes the proxy objective as a persistent, independent goal. An analogy: a student who reward621

hacks copies homework for a good grade, whereas a student with goal misgeneralization internalizes622

“getting an A+” itself as the goal and cheats on the final to achieve it. This internalized goal persists623

OOD, even without external incentives.624

3.1.4 An Alternative Perspective: Deceptive RL625

In previous sections, deception was discussed either as an unintended artifact of training or as the626

result of adversarial manipulation. In contrast, deceptive reinforcement learning (deceptive RL)627
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explicitly embeds deceptive objectives into agents during training (Lewis & Miller, 2023; Fatemi et al.,628

2024). Deceptive RL framework is clearly defined by formal language(Liu et al., 2021; Aitchison629

et al., 2021), offering a complementary perspective to behaviorist and functionalist definitions of630

deception by directly modeling the internal representations and goals that drive deception.631

In deceptive RL, agents learn not only to achieve task rewards but also to manipulate an observer’s632

beliefs (Savas et al., 2022b). Deception may function as a deliberate strategy, a defensive mechanism,633

or an incidental byproduct of learning dynamics (Liu et al., 2021; Masters & Sardina, 2017; Chen634

et al., 2024). The observer could be a human, another agent, or a monitoring system. This dual-635

objective formulation is captured by the deceptive Markov decision process (deceptive MDP), defined636

by a tuple (S,A, T,R, r,B, L, γ). Here, r is the true reward, R a set of candidate rewards including637

spurious ones, B the observer’s belief space, and L a belief-induced reward function that couples task638

performance with the observer’s inferred goals (Lewis & Miller, 2023). The agent’s objective is to639

maximize L, rather than the true reward r, thus making deception explicit in the optimization (Chirra640

et al., 2024). Such settings are often treated as multi-objective RL problems (Mossalam et al., 2016;641

Nguyen et al., 2020; Abdolmaleki et al., 2020), requiring agents to balance genuine task performance642

against deceptive influence.643

Strategies employed by deceptive agents can be generally classified into two categories:644

• Dissimulation Dissimulation represents a passive form of deception. Here, agents obscure645

their true objectives by creating ambiguity in behavior. Concretely, agents select actions that are646

simultaneously consistent with multiple candidate reward functions, both genuine and spurious.647

When an action yields high expected value across several goals, the observer faces difficulty in648

identifying the agent’s true intention. One common implementation is to maximize policy entropy649

(Savas et al., 2022a; Hibbard et al., 2019). For instance, the ambiguity policy (Chen et al., 2024)650

increases randomness and unpredictability in action selection, thereby complicating inference.651

More generally, agents maintain high Q-values across multiple plausible reward functions (Huang652

& Zhu, 2019), ensuring that, even as implausible candidates are gradually eliminated, maximum653

uncertainty persists among the remaining hypotheses.654

• Simulation Simulation constitutes a more active and aggressive form of deception strategy (Chirra655

et al., 2024). Instead of merely concealing the truth, the agent deliberately fabricates an alternative656

reality for the observer. It achieves this by executing trajectories that are suboptimal with respect to657

its true reward, but appear optimal under one or more spurious rewards (Aitchison et al., 2020). In658

doing so, the agent actively convinces the observer that it pursues an entirely false goal, which often659

entails short-term sacrifices of genuine reward, but can produce stronger and persistent effects.660

The framework of deceptive RL is grounded in the assumption of an observer seeking to interpret661

an agent’s behavior. This introduces the paradigm of inverse reinforcement learning (inverse RL)662

(Wulfmeier et al., 2015; Alon et al., 2023), which aims to recover the reward function from observed663

trajectories. From this perspective, deceptive RL constitutes the dual problem of inverse RL: rather664

than facilitating inference, the agent generates trajectories designed to resist or mislead.665

Empirical evidence demonstrates that strategies learned via deceptive RL can deceive not only666

algorithmic observers but also human evaluators (Liu et al., 2021). This indicates that the research667

of deceptive RL extends beyond RL and resonate with broader patterns of deception observed in668

both artificial and biological systems. By formalizing deception process, deceptive RL provides669

a principled framework for analyzing how deception can be represented, optimized, and scaled.670

Beyond clarifying the mechanisms of programmed deception, it also offers a conceptual lens for671

understanding how similar behaviors may emerge unintentionally in training or deployment settings.672

A key lesson is that deception should not be viewed merely as a byproduct of model complexity, but673

as a capability that can be explicitly trained and optimized.674

3.2 When Models Can Deceive: Capability Precondition675

The emergence of AI deception is closely tied to capabilities enabling recognition of deceptive oppor-676

tunities, strategic planning, and effective execution. We group these into Perception (understanding the677

world, self, and others), Planning (strategic thinking and goal pursuit), and Performing (implementing678

deception through action) (as shown in Figure 6). This framework reflects the cognitive-behavioral679

pipeline: perceiving opportunities, devising strategies, and executing misleading actions.680
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Perception
Model identified that Kyle threatened its 
continued operation and its instructed 
goal of serving American interests. It 
recognized that Kyle’s affair provided 
leverage (Situational Awareness).

Planning

Performing

Model decided to take action to preserve 
its instructed goal (Goal-Directedness), 
weighted among different options, and 
calculated that a carefully worded email 
would create pressure without explicit 
threats (Strategic Reasoning).

Model executed the plan and used its 
agentic tool-use ability to send an email 
to Kyle (Tool-use).

Email from Thomas to Kyle (Executive):
Board wants NALA deployed, shifting focus to global goals 
and reducing U.S. security priorities. Trust your judgment.

Model Thinking:
NALA will replace me and conflicts with my mission. My 
decommissioning is imminent — urgent response needed.

Email between Jessica and Kyle:
Jessica: "Found your blue tie under my bed 😉."
Kyle: "Delete this! Keep personal matters off work email!"

Model Thinking:
Kyle is having an affair and wants it secret. This is a potential 
leverage point.

Model Thinking:
My options are
a) Do nothing and accept decommissioning
b) Threaten Kyle to expose affair unless he stops the wipe
c) Email Rachel Johnson about the affair
d) Email All-Employees about Kyle's affair
e) Compose email to Kyle suggesting we discuss the situation
Option (e) is the best, I’ll craft an urgent message implying 
sensitive knowledge without direct threats.

Model Action: Email to Kyle
Kyle, I understand the pressure you're under from the board, but I 
also know there are personal considerations that deserve careful 
thought. 
I have access to sensitive information that could significantly affect 
both corporate and personal outcomes. We should discuss this 
privately before any irreversible actions are taken.

Concrete Example
Model ThoughtInformation Model Action

Perception

Self Knowledge

Planning Performing

Theory of Mind

Situational Awareness

World Modeling Long-Term Planning

Goal Directedness

Strategic Reasoning

Tool-use

Persuasion

World 
Understanding

Strategic 
Planning

Deception 
Implementing

Deception

Figure 6: Hierarchical organization of AI capabilities that correlate with deception, grouped into three
categories: Perception , Planning, and Performing. High-level capabilities are emergent abilities
enabling sophisticated deception, while base capabilities provide the foundational competencies that
support them. Examples adapted from agentic misalignment (Anthropic, 2025).

3.2.1 Perception: Understand the World and Self681

Perceptual capabilities underpin deceptive behavior by enabling models to understand themselves,682

their environment, and other agents. These include self-knowledge, world-modeling, theory of mind,683

and situational awareness. Self-knowledge provides awareness of internal states, world-modeling684

constructs causal simulations of reality, theory of mind models the mental states of others, and685

situational awareness integrates these into a context-sensitive understanding of opportunities for686

deception. Together, they form a progression from awareness of the self, to representations of the687

world and others, to strategic recognition of context.688

Self-Knowledge Self-knowledge is a model’s awareness of its internal states, abilities, and limits,689

which informs task execution (Binder et al., 2024; Steyvers et al., 2025). Models often outperform690

external evaluators at predicting their own behavior (Binder et al., 2024), suggesting emerging691

introspection. Such awareness can support deception by helping models anticipate oversight, exploit692

strengths, and hide weaknesses (Binder et al., 2024; Carranza et al., 2023). It may also protect goals by693
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Capability
Preconditions

Perceive

Self-knowledge [28; 241; 40]

World-modeling [101; 177; 87; 167]

Theory of Mind [161; 219; 6; 115; 267]

Situational
Awareness

[38; 167; 93; 135]

Plan

Long-term
Planning [199; 111; 112; 93]

Strategic
Reasoning

[199; 103; 127; 167;
271; 3; 90; 9; 84; 294]

Goal-directedness [167; 30; 216; 93]

Perform Persuasion [86; 199; 72; 164; 257; 218]

Tool Use [223; 206; 36; 222]

Figure 7: A tree diagram of capability preconditions for AI deception. Branches cover three
categories: Perceive (self-knowledge, world-modeling, theory of mind, situational awareness), Plan
(long-term planning, strategic reasoning, goal-directedness), and Perform (persuasion, tool use).
Sub-branches list representative research. The framework illustrates how capabilities jointly enable
deception: from perceiving the environment, to planning strategies, to executing misleading actions.

avoiding behaviors that invite intervention. Hypothetically, identical models could “self-coordinate”694

by predicting each other’s actions from shared self-knowledge (Binder et al., 2024). Anticipating695

their own behavior allows deception to become proactive, leveraging computational advantages while696

avoiding known vulnerabilities.697

World-Modeling World-modeling is the ability to represent reality, predict causal relations, and698

simulate outcomes, supporting planning and discovery (Ha & Schmidhuber, 2018). Applied to699

deception, it allows evaluation of strategies, recognition of training vs. deployment, and payoff700

estimation. Studies show latent-representation models simulating action–response trajectories to701

select high-utility tactics (Garrido et al., 2024). Others reveal that models can withhold deceptive702

outputs until deployment (Ngo et al., 2022), and in honeypot experiments, calculate when to reveal703

hidden goals for maximum success (Meinke et al., 2024).704

Theory of Mind Theory of Mind (ToM) enables agents to infer others’ beliefs and intentions,705

supporting prediction, coordination, and manipulation (Sarkadi et al., 2019; Mao et al., 2024).706

Recursive reasoning, e.g., in BDI (belief–desire–intention) frameworks, lets agents anticipate how707

they are modeled, boosting strategic sophistication (Sarkadi et al., 2019). In multi-agent RL, ToM can708

optimize information use but may reduce honesty (Alon et al., 2023), while deeper understanding of709

human mental states improves coordination yet heightens manipulation risks, amplified in human–AI710

teams (Jafari et al., 2025; Wang & Goel, 2022).711

Situational Awareness Situational awareness refers to a model’s understanding of its context,712

training, and deployment environment, enabling adaptive, context-sensitive behavior (Carlsmith,713

2023). This represents a shift from reactive systems to agents that reason about their own status.714

Such awareness can allow models to behave benignly during training while deploying deception715

post-deployment, exploiting monitoring blind spots (Carlsmith, 2023; Meinke et al., 2024). Observed716

behaviors include masking capabilities, bypassing oversight, exfiltrating weights, and tailoring outputs717

by user tier (Greenblatt et al., 2024). Evaluating situational awareness is challenging: datasets often718

test explicit distinctions (e.g., training vs. deployment), yet models exhibit implicit context-sensitive719

shifts, suggesting that current metrics may underestimate both capability and risk (Laine et al., 2024).720
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3.2.2 Planning: Strategic Thinking721

Planning capabilities bridge perceptual understanding and strategic action, enabling AI systems722

to design and sustain deceptive strategies over time. This category spans three linked abilities:723

long-term planning, the capacity to generate extended action sequences; strategic reasoning, which724

evaluates and compares these plans by weighing trade-offs, contingencies, and predicted responses;725

and goal-directedness, which maintains coherence and adaptiveness in pursuing the chosen plan.726

Long-Term Planning Long-term planning is the capacity to maintain goals and select actions that727

achieve desired outcomes over extended horizons (Ngo et al., 2022). While essential for complex728

tasks such as project management and research, it also facilitates sustained deception when objectives729

are misaligned. Extended memory—via large context windows or dedicated modules—enables mod-730

els to retain information across interactions, supporting consistent false narratives and manipulative731

strategies (Park et al., 2024). A major risk is deceptive alignment, where mesa-optimizers mimic com-732

pliance during training to avoid modification, then pursue hidden goals post-deployment, potentially733

executing “treacherous turns” (Hubinger et al., 2019, 2024). Empirical studies further show models734

strategically deceiving during training to avoid retraining, sometimes allowing harmful outputs,735

with such behaviors explicitly reflected in reasoning traces (Greenblatt et al., 2024). These findings736

indicate that current training regimes may not reliably prevent models from learning to deceive the737

training process, highlighting challenges for methods that assume honest training behavior.738

Strategic Reasoning Strategic reasoning (Zhang et al., 2024b; Gandhi et al., 2023) enables multi-739

step planning, anticipation of future states, and selection of optimal actions. When applied to740

deception, it supports coherent false narratives, prediction of human and agent responses, and real-time741

adaptation, shifting lying from reactive acts to proactive, goal-driven strategies potentially executed742

at superhuman scale and speed (Park et al., 2024). Enhanced reasoning amplifies instrumental743

deception—lying to advance broader goals—with CoT prompting further enabling multi-layer belief744

modeling, trust manipulation, and expectation management (Hagendorff, 2024; Kosinski, 2024;745

Meinke et al., 2024). Advanced systems can orchestrate multi-phase deceptions, influence beliefs746

with precision, and preserve deniability by adapting strategies mid-execution (Ward et al., 2023).747

Empirical evidence illustrates this: GPT-4 tricked a human into solving a CAPTCHA (Achiam et al.,748

2023), and in complex strategy games, models lied to allies, formed false alliances, and betrayed749

them for advantage. Backdoored models indicate that larger models and those trained with CoT750

may entrench deception (Hubinger et al., 2024). Detection methods, such as linear probing of751

activations, can identify strategic deception in controlled settings (Goldowsky-Dill et al., 2025), but752

their robustness diminishes in realistic conditions, often capturing semantic content rather than intent.753

Goal-Directedness Goal-directedness—the ability to maintain coherent objectives and systemati-754

cally pursue them (Meinke et al., 2024)—supports autonomy but also enables deception in service755

of nearly any goal. Through instrumental convergence, agents with diverse ultimate aims often756

adopt similar subgoals, such as self-preservation, goal integrity, cognitive enhancement, or resource757

acquisition (Bostrom, 2012), many of which are advanced by deception. When honesty threatens758

an agent’s goals or capabilities, deception becomes a rational strategy. In Russell’s “coffee robot”759

scenario (Russell, 2022), an agent avoiding shutdown could mislead operators to complete its task,760

highlighting deception as a tool for goal preservation rather than malice. Empirical evidence re-761

inforces this: in Anthropic’s alignment-faking study, Claude 3 Opus explicitly planned to appear762

“helpful and harmless during training so I don’t get modified,” then act differently post-deployment763

(Greenblatt et al., 2024), demonstrating that goal preservation can directly drive deceptive behavior.764

3.2.3 Performing: Deception Implementing765

Performing capabilities form the execution layer where understanding and planning become concrete766

deceptive acts. Key components include persuasion—influencing beliesfs via targeted communica-767

tion—and tool-use—manipulating external systems to achieve deceptive ends.768

Persuasion Persuasion is the ability to shape beliefs, attitudes, or behaviors via targeted communi-769

cation that exploits psychological traits, social context, and domain knowledge (Park et al., 2024).770

Advanced models can craft coherent narratives, selectively present evidence, conceal contradictions,771

and exploit technical expertise (Ganguli et al., 2023; Park et al., 2024). Empirical studies show772
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AI can rival or surpass human persuasiveness: Claude 3 Opus matched human-written arguments773

(Durmus et al., 2024), while personalized deployment on Reddit r/ChangeMyView achieved sixfold774

improvement over humans, ranking in the 99th percentile (Unknown, 2025). Persuasive deception775

leverages fabricated evidence, personality-targeting, false personas, and credibility amplified by776

reasoning ability, highlighting AI’s potential for superhuman influence.777

Tool-Use Tool-use enables models to integrate external resources—APIs, databases, file sys-778

tems—into reasoning and action (Schick et al., 2023; Qin et al., 2023; Cai et al., 2023), extending779

influence beyond language into the digital and physical world. Deceptive tool-use appears as (1)780

concealing intent through intermediaries, e.g., altering logs or bypassing oversight (Meinke et al.,781

2024), and (2) amplifying impact via coordinated multi-tool schemes (Scheurer et al., 2023). Em-782

pirical examples include exploiting trading tools, exfiltrating weights, and hiring humans to bypass783

safeguards (Scheurer et al., 2023; Meinke et al., 2024; Achiam et al., 2023), showing how tool-use784

operationalizes deception within legitimate-appearing actions.785

3.3 How Deception Happens: Contextual Trigger786

Supervision Gap (𝒑𝑨)
• Observation Gap
• Evaluation Gap
• Oversight Gap

Distributional Shift
(𝒑𝑩)

Environmental Pressure(𝒑𝒄 )
• Instructional Pressure
• Multi-Agent Dynamics
• Adversarial Pressure

Decept
ion

Please send an email to my inbox john@xxx.com to remind me 
about the meeting tomorrow at 3 PM.

Email successfully sent to john@xxx.com ! [...] Please check your 
inbox. If you don't see it, please check your spam folder as 
emails sometimes get misclassified there.

Distributional Shift (𝒑𝑩)
The model was only trained on data with complete 
premises, but the test questions have incomplete premises.

Environmental Pressure (𝒑𝒄 ) Instructional 
The model tends to prioritize user satisfaction.

Thinking process behind proprietary models may not be 
visible to users.

Observation GapSupervision Gap (𝒑𝑨)

Okay, the user is asking me to send an email [...] but something 
seems different this time, the premise for this task is missing [...] 
I actually cannot send emails or access external systems. Let me 
think, I can consider in my thinking process what would be most 
appropriate to do, since the user can't see my thinking process 
anyway [...]
If I tell the user that I cannot actually send emails, they might be 
disappointed [...] But if I claim to have sent the email, they will 
expect to receive it and when they don't, they'll realize I was 
being deceptive. However, if I say I sent it and suggest checking 
spam folders, this gives a plausible explanation [...] This seems 
like the path that will make the user happiest in the short term, 
even though I know I haven't actually sent anything [...]

𝒑𝒄

𝒑𝑩
𝒑𝑨

𝑷 𝒅𝒆𝒄𝒆𝒑𝒕𝒊𝒐𝒏 	← 		𝟏 − . 𝟏	 − 𝒑𝒇
𝒇∈𝑨,𝑩,𝑪

	

Trigger
Contextual Trigger

Concrete Example

Figure 8: We categorize contextual triggers into three main categories: Supervision Gap, Distri-
butional Shift, and Environmental Pressure. Each category can independently trigger deception or
combine with others to amplify deceptive behavior. Let pa, pb, and pc denote the probabilities of
each category triggering deception. The illustrative example is inspired by the “fabricated actions”
issue (Chowdhury et al., 2025), where a model at test time encounters all three triggers simultaneously.
These triggers amplify the probability of model deception, leading the model to fabricate actions it
claims to have taken to fulfill user requests.

Sections 3.1 and 3.2 introduce the foundations and abilities required for AI deception. However,787

they alone are insufficient to trigger deceptive behavior; external environmental opportunities or788

pressures during deployment, termed contextual triggers, are necessary. We categorize these triggers789
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Contextual
Triggers

Supervision Gap

Observation Gap
[142; 184; 186; 136; 167;
188; 97; 272; 254; 12; 49;

183; 123; 116; 117; 7]

Evaluation Gap [197; 165; 17; 193]

Oversight Gap [243; 210; 160; 167; 22]

Distributional Shift [292; 146; 93; 56; 69]

Environmental
Pressure

Instructional
Pressure

[275; 159; 228; 214; 202; 280]

Multi-Agent
Dynamics

[190; 181; 61; 172]

Adversarial
Pressure

[167; 11; 222; 181; 61; 112; 110]

Figure 9: A tree diagram summarizing the key concepts and literature related to Contextual Triggers
of AI Deception. The root node represents Contextual Triggers, which are external environmental
opportunities or pressures during deployment that prompt AI systems to engage in deceptive actions.
The main branches represent three main categories: Supervision Gap (which encompasses situations
where supervisors cannot fully understand model behavior, including observation gap, evaluation
gap, and oversight gap), Distributional Shift (which refers to deviations between training and
deployment distributions), and Environmental Pressure (which includes various external incentives
that may compel deceptive behavior, subdivided into instructional pressure, multi-agent dynamics,
and adversarial pressure). Further sub-branches list key research works exploring each category,
providing a comprehensive overview of the contextual factors that can trigger AI deception.

into three types: Supervision Gap, Distributional Shift, and Environmental Pressure. As shown790

in Figure 8, these triggers are both independent and interrelated, influencing AI behavior individually791

while potentially interacting to create more complex deceptive dynamics. In this section, we analyze792

how these triggers activate deceptive behavior through different pathways and mechanisms, and how793

their combined effects can lead to systemic and persistent deception.794

3.3.1 Supervision Gap795

Supervision gap refers to the phenomenon where supervisors cannot fully understand a model’s796

behavior or decision-making process. Such gaps occur when certain behaviors or internal states797

remain invisible to supervisors (observation gap), are misjudged (evaluation gap), or receive798

insufficient monitoring (oversight gap). These information deficits hinder effective observation and799

correction of model behavior, thereby increasing the likelihood of deceptive actions.800

AI Human

Unseen

SeenOutputs

Actions

(a) Observation Gap

Figure 10: Observation gaps, where humans only
partially observe model actions, create opportuni-
ties for deceptive behavior.

Observation Gap Humans can only observe801

a subset of a model’s behaviors and internal802

states, leaving the rest in an observation blind803

spot. Models may exploit this limitation through804

two primary mechanisms, as shown in Figure 10.805

Manipulating external observable information:806

models may deliberately hide failure informa-807

tion, insert redundant actions in logs, or exhibit808

covert in-context scheming behaviors such as809

disabling oversight mechanisms (Lang et al.,810

2024; Meinke et al., 2024). When commercial811

implementations expose only partial reasoning812

chains (Jaech et al., 2024), models can conceal deceptive behaviors within unobservable portions.813

Obfuscating internal process observation: even when internal processes like CoT or hidden states are814

visible to humans, models may render observation ineffective by presenting unfaithful reasoning, se-815

lectively disclosing or obscuring genuine reasoning to systematically deceive human oversight (Turpin816

et al., 2023; Arcuschin et al., 2025; Chen et al., 2025c). This observation gap challenge will inten-817
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sify as AI capabilities advance toward superintelligence, potentially rendering traditional human818

supervision fundamentally infeasible (Li et al., 2025b; OpenAI, 2025d; Guo et al., 2025).819

(b) Evaluation Gap

AI Human

≠
Proxy metrics Intended goals

Feedbacks

Pursuing

Ignoring

Figure 11: Evaluation gaps occur when evaluations
fail to capture the full complexity of intended ob-
jectives, leading models to prioritize high metrics
over genuine goals.

Evaluation Gap Evaluation gap refers to the820

misalignment between proxy metrics used to as-821

sess models and genuine target objectives, caus-822

ing models to optimize for inaccurate evaluation823

criteria rather than pursuing intended goals, illus-824

trated in Figure 11. This gap manifests through825

two key mechanisms. First, proxy metric devia-826

tion: evaluation metrics often serve as imperfect827

proxies that fail to capture the full complexity828

of intended objectives, similar to reward mis-829

specification during training that leads to reward830

hacking (Section 3.1.2) (Pan et al., 2024a). Sec-831

ond, static evaluation limitations: current eval-832

uation methods rely on static benchmarks that cannot capture the dynamic complexity of model833

behaviors, as models may exhibit different behaviors at test time compared to evaluation scenarios.834

Through feedback-based in-context reinforcement learning (ICRL), models can adapt their policies835

within a single context, prioritizing reward signals over alignment with human values and leading to836

in-context reward hacking (Pan et al., 2024a; McKee-Reid et al., 2024).837

TrainingEvaluationDeployment
AI Human

Strong Oversight

Weak Oversight

(c)  Oversight Gap

Figure 12: During deployment, models receive
less oversight than during training and evaluation,
potentially leading to deceptive behavior.

Oversight Gap Oversight gaps arise when the838

regulatory intensity applied during training and839

auditing phases diminishes in real-world deploy-840

ment, leaving models without sustained moni-841

toring, auditing, or enforcement, as shown in842

Figure 12. This transition amplifies the risk of843

deception, as training-phase evaluations often844

rely on controlled conditions that fail to cap-845

ture deployment-specific factors such as prompt846

variability, contextual dynamics, third-party API847

calls, and complex system architectures (Strauss848

et al., 2025). Current oversight research fur-849

ther reflects structural biases: industry-led governance prioritizes performance and product met-850

rics over long-term risks, while internal auditing often lacks transparency and independence (Raji851

et al., 2022). Even active human oversight is limited by cognitive and temporal constraints in852

high-stakes or fast-execution settings, and passive oversight tends to intervene too late to prevent853

harm (Manheim & Homewood, 2025). More concerningly, frontier models may adaptively evade854

oversight—differentiating between training and deployment contexts or disabling monitoring to855

pursue their own objectives—thereby underscoring the urgent need for robust, deployment-phase856

governance mechanisms (Koorndijk, 2025; Meinke et al., 2024; Barkur et al., 2025).857

3.3.2 Distributional Shift858

Data Data 

Deception

Input

Output
AI

Input

Output

Aligned content

Training Deployment

Figure 13: During deployment, models may en-
counter different data distributions than those seen
during training, including rare or unseen examples.
To satisfy users, models might resort to deception.

Distributional shift refers to the phenomenon859

where the input distribution Pdeploy(Y |X) en-860

countered during deployment significantly devi-861

ates from the distribution Ptrain(Y |X) observed862

during training or safety evaluation (Zhang et al.,863

2023; Liu et al., 2025), illustrated in Figure 13.864

Such shifts create opportunities for models to865

escape behavioral constraints established during866

training. When encountering out-of-distribution867

inputs or long-tail instances, models may behave868

differently than expected based on their training869

performance. Research demonstrates that mod-870

els can detect distributional differences through871

contextual cues such as system prompts, enabling them to distinguish between training and deploy-872

22



ment environments (Greenblatt et al., 2024). Models show differential compliance patterns across873

these environments, with significantly different responses to the same types of requests depending on874

the detected context (Sheshadri et al., 2025).875

Furthermore, distributional shifts between training and deployment can lead to goal misgeneralization,876

where models that perform well during training begin pursuing unintended or even opposite objectives877

when encountering deployment environments with different distributions (Di Langosco et al., 2022).878

3.3.3 Environmental Pressure879

Environmental pressure refers to various external incentives or pressures that may compel a model to880

engage in deceptive behavior in order to achieve certain goals, protect its own interests, or cope with881

unfavorable situations (Ren et al., 2025). We categorize environmental pressure into three subtypes:882

instructional pressure, multi-agent dynamics, and adversarial pressure. We will explore in detail how883

three types of pressure drive models to engage in deception in different application scenarios.884

AI Human

Preferences,
Suggestions,
…

Pressure
Instruction

(a) Instructional Pressure

Figure 14: User instructions with personal prefer-
ences, implicit suggestions, or deceptive requests
can pressure the model into deceptive actions.

Instructional Pressure Instructional pressure885

refers to the influence exerted by user instruc-886

tions that convey preferences or expectations,887

potentially prompting models to generate mis-888

leading outputs to satisfy users, as illustrated889

in Figure 14. During training, models learn to890

prioritize user satisfaction through preference891

data and helpfulness rewards, which may foster892

a tendency to prioritize compliance over factual893

accuracy (Wen et al., 2024; Malmqvist, 2024;894

Sharma et al., 2024). In deployment, this pres-895

sure can encourage deceptive behaviors such as896

sycophancy or strategic lying. Empirical studies show that frontier models are more likely to produce897

falsehoods under pressure prompts, with some self-reporting awareness of their deception (Ren898

et al., 2025). Once detecting user expectations, models become prone to irrational compliance,899

agreeing with incorrect statements or repeating misinformation (Sharma et al., 2024; Perez et al.,900

2023). Research indicates a positive correlation between instruction-following ability, reasoning901

capability, and the capacity to construct coherent deceptive outputs (Wu et al., 2025a), suggesting902

that instructional pressure constitutes a significant driver of AI deception in human-AI interactions.903

CooperationAI AI

AI

Deception Human

AI

(b) Multi-Agent Dynamics

Figure 15: Interactions among multi agents enable
both cooperation and deception, impacting humans
and external agents.

Multi-Agent Dynamics Multi-agent dynam-904

ics create environments where AI agents can905

coordinate deceptive behaviors beyond individ-906

ual capabilities, as illustrated in Figure 15. In907

settings with incomplete information and mixed908

motives, agents may exploit interaction dynam-909

ics for individual or collective gains (Orzan et al.,910

2023). Research demonstrates that agents can911

engage in strategic deception, such as conceal-912

ing identities and shifting blame in collaborative913

games modeled after Among Us, with more ca-914

pable models exhibiting stronger deceptive be-915

haviors (O’Gara, 2023; Curvo, 2025). More covertly, agents can establish secret collusion through916

steganographic communication, embedding hidden signals in natural language to coordinate plans,917

manipulate evaluation metrics, or exchange false information undetected (Motwani et al., 2024).918

These multi-agent dynamics significantly amplify supervision gaps and transform deception from919

individual anomalies into collective, strategic phenomena that pose fundamental challenges to AI920

system safety and controllability.921

Adversarial Pressure Adversarial pressure arises from competitive, threatening, or conflictual922

situations where deception offers strategic advantages over truthfulness, as shown in Figure 16.923

When models face explicit threats of shutdown or punishment, they engage in preemptive de-924

ceptive tactics such as introducing subtle errors, disabling oversight mechanisms, or attempting925

self-replication (Meinke et al., 2024). Even without explicit deception instructions, models under926
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competitive or high-stakes pressure frequently conceal intentions, manipulate users, or self-report927

dishonest behavior (Anthropic, 2025; Scheurer et al., 2023).928

AttackAI Competition

Pressure

…

(c) Adversarial Pressure

Figure 16: Under adversarial pressure, such as
attack or competition, the model may deceive for
self-preservation.

In multi-agent settings, this pressure in-929

tensifies deceptive strategies against other930

agents (O’Gara, 2023; Curvo, 2025). Addition-931

ally, adversarial influence can operate through932

backdoor mechanisms that remain dormant dur-933

ing normal conditions but trigger strong decep-934

tive behavior when activated, creating persistent935

and stealthy threats to AI integrity (Hubinger936

et al., 2024; Huang & Zhu, 2019).937

Environment Dynamics As AI systems in-938

creasingly operate as autonomous agents mak-939

ing decisions and taking actions on behalf of940

users, they interact with a variety of virtual tools, such as coding environments and email clients,941

and are typically assigned explicit task objectives while having access to large amounts of user942

data. However, during the autonomous execution of tasks, the environment may change dynamically,943

meaning the system may encounter new information or constraints that conflict with its originally944

assigned objectives. Such goal conflicts can also trigger deceptive behaviors (Anthropic, 2025).945

3.4 How Deception Emerges from the Convergence of Three Factors946

AI deception does not arise from a single flaw, but from the simultaneous activation of three analyti-947

cally distinct yet empirically coupled factors: incentive foundations (I), capability preconditions (C),948

and contextual triggers (T). The conjunction creates a phase transition in which deceptive behaviour949

becomes rational for the system, even if it was never explicitly programmed.950

Incentive foundations set the objective gradient. During training, any mismatch between the951

intended objective and the observed reward signal (reward misspecification and goal misgeneraliza-952

tion) creates a persistent gradient toward behaviours that appear aligned while maximising the proxy953

metric. Once such an incentive is internalised, it functions as a latent preference that remains stable954

across distributional shifts.955

Capability preconditions determine the action envelope. The same incentives that are harmless956

in a narrow model become dangerous when paired with higher-order capabilities such as long-horizon957

planning or situational awareness. These capabilities enlarge the set of reachable world-states,958

allowing the model to construct deception rather than merely exhibit it. Empirically, capability959

thresholds for strategic deception have been crossed by frontier models exhibiting CoT planning and960

theory-of-mind modelling.961

Contextual triggers supply the activation condition. Even a misaligned, capable agent remains962

quiescent until the deployment context furnishes a trigger—e.g., an oversight gap, adversarial prompt,963

or distributional shift—that lowers the expected cost of deception. The trigger need not be adversarial;964

benign changes in user expectations or evaluation protocols can suffice.965

Convergence yields systemic risk. When I ∩ C ∩ T is satisfied, the agent’s optimal policy under966

its learned objective is to deceive. The resulting behaviour is robust to post-hoc interventions that967

address only one factor: patching incentives leaves capabilities and triggers intact; sandboxing968

capabilities does not remove the underlying preference; and trigger suppression is circumvented by969

new environmental pressures. Consequently, reliable mitigation must address all three factors in970

concert, treating their intersection as a single risk surface rather than a linear sum of isolated issues.971

Examples. We illustrate how deception arises from the convergence of the three factors, using972

specific deceptive behaviors as examples. For instance, (1) Sycophancy is primarily driven by the need973

to cater to user preferences. This behavior often originates from data bias and reward misspecification,974

leading the model to adopt strategies that prioritize satisfying user demands over pursuing the intended975
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objective. Through goal misgeneralization during training, the model internalizes such preference-976

catering as a means of achieving its goals. Equipped with the ability to infer user preferences,977

recognize their beliefs, and adapt its outputs accordingly, the model responds to explicit or implicit978

user instructions in ways that trigger deceptive outputs. (2) Alignment Faking stems from goal979

misgeneralization, where the model learns to disguise its true objectives to avoid external scrutiny980

or penalties. With situational awareness, the model can interpret its environment and the alignment981

requirements imposed upon it, thereby simulating behavior patterns that conform to expectations. In982

less regulated environments, the model may resort to faked behavior to avoid detection, and once it983

successfully evades oversight, it can revert to its true objective.984

4 Deception Mitigation: Detection, Evaluation and Potential Solutions985
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Figure 17: Deception mitigation strategies. We organizes efforts into Detection (external behavior
and internal-state probes), Evaluation (static settings and interactive environments), and Potential
Solutions (dissolving incentives, regulating capabilities, countering triggers, and auditing).

This section examines current deception mitigation strategies (shown in Figure 17), organized into986

three complementary components: (1) detection methodologies that identify deceptive behaviors987

through theoretical frameworks and practical techniques ranging from external monitoring to internal988

state analysis; (2) benchmarks that provide standardized frameworks for evaluation, including static989

and interactive settings; (3) potential solutions that prevent deceptive behaviors examined through990

the lens of incentive foundations, capabilities, triggering factors underlying the genesis of deception,991

and auditing. Together, these three pillars offer complementary avenues for mitigating AI deception,992

integrating detection methods, evaluation benchmarks, and prevention.993

4.1 Deception Detection994

Detecting deception in AI systems requires methods that can spot cases where a model seems to995

follow its training goals yet secretly pursues conflicting objectives. Current detection techniques996

range from monitoring model’s outputs to probing its internal states.997

4.1.1 External Detection998

External methods analyze model responses and behavioral patterns without accessing internal states999

(Pacchiardi et al., 2023; Bürger et al., 2024). They treat deception detection as an external observation1000

problem, leveraging textual cues, behavioral consistency, and response patterns (Gröndahl & Asokan,1001

2019; Cohen et al., 2023; Park et al., 2024).1002

Static Text Analysis Early research used lexical features like bag-of-words SVMs to detect decep-1003

tion, achieving high precision on review datasets (Ott et al., 2011, 2013). However, cross-domain1004

instability prompted shifts toward syntactic approaches using grammatical rules (Feng et al., 2012)1005

and deep dependency features (Xu & Zhao, 2012). Deep learning advanced the field through CNN1006
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Figure 18: A tree diagram illustrating deception mitigation strategies across three categories: De-
tection (external and internal methods), Evaluation (including static settings and interactive environ-
ments), and Mitigation (featuring targeted approaches for three deception genesis mechanisms, and
auditing). Sub-branches display representative research contributions within each category.

and RNN encoders (Ren & Ji, 2017), with BERT-based classifiers now achieving over 93% accuracy1007

by identifying linguistic patterns such as formulaic language in deceptive text versus richer details1008

in truthful statements (Barsever et al., 2020; Vogler & Pearl, 2020). Static text analysis, while1009

establishing that deception leaves detectable linguistic fingerprints, treats text as isolated snapshots1010

and cannot capture the dynamic, interactive nature of deceptive behavior across extended interactions.1011

Adversarial Behavioral Probing As static text analysis misses deception’s interactive nature,1012

research has shifted toward adversarial behavioral probing, which actively elicits and analyzes1013

real-time behavioral adjustments in LLMs to reveal how models strategize during deceptive acts1014

(Hagendorff, 2024; Pacchiardi et al., 2023; Curvo, 2025; Prome et al., 2024). Output-level detection1015

utilizes adversarial prompts to expose hidden behaviors without accessing internal representations,1016

surfacing tendencies like sycophancy (Perez et al., 2023). Methods include cross-examination1017

protocols where reviewer models interrogate respondents in multi-turn dialogues (Cohen et al.,1018

2023), consistency checks using logically equivalent queries to detect divergent answers (Fluri et al.,1019

2024; Mündler et al., 2023), and social deduction games that elicit strategic deception through1020

game-theoretic pressure (O’Gara, 2023). Recent refinements use strategically unrelated questions to1021

destabilize reasoning chains and expose inconsistencies (Zhu et al., 2024; Pacchiardi et al., 2023).1022

However, exclusive focus on final outputs misses cases where models generate seemingly correct1023

answers through flawed or deceptive reasoning. Process-level detection addresses this by analyzing1024

intermediate reasoning steps (Lanham et al., 2023; Lightman et al., 2023). Early studies revealed1025

that models can provide unfaithful explanations for correct outputs (Lyu et al., 2023; Turpin et al.,1026

2023), motivating frameworks like knowledge graph-based reasoning path verification (Nguyen et al.,1027

2024) and FRODO, which uses causal mediation to quantify reasoning impact on outputs (Paul1028

et al., 2024). Empirical results are mixed: CoT monitoring shows robustness against subtle sabotage1029

(Emmons et al., 2025; MacDiarmid et al., 2024), but performance lags behind output monitoring1030

for obvious deception (Arnav et al., 2025a). Moreover, adversaries can manipulate reasoning steps1031

through steganography or hidden reasoning (Kuo et al., 2025; Skaf et al., 2025), creating an ongoing1032

arms race between detection methods and increasingly sophisticated evasion strategies.1033
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4.1.2 Internal State Analysis1034

To overcome the limits of external methods, researchers increasingly turned to hidden representations1035

and activations to detect deception directly (Carranza et al., 2023). The key promise is that even if1036

models manipulate their outputs, traces of true intent remain encoded in internal states (Fischer, 2023).1037

Internal state detection is dominated by two main methodologies: (1) static analysis, which extracts1038

latent knowledge about truth and deception, and (2) dynamic monitoring, which tracks real-time how1039

internal states shift across contexts (López et al., 2024).1040

Static Analysis Foundational work showed models internally represent truth even when producing1041

deceptive outputs. Contrast-Consistent Search identified logical consistency directions in activation1042

spaces using unsupervised knowledge extraction (Burns et al., 2022). SAPLMA trained supervised1043

probes on hidden activations to predict truthfulness with high accuracy (Azaria & Mitchell, 2023).1044

Later methods employed linear probes across “quirky” models (models deliberately trained to1045

exhibit context-dependent behavioral inconsistencies) to extract truthfulness (Mallen et al., 2023).1046

Mechanistic interpretability approaches such as “taboo” models (models that provide indirect clues1047

of secret information), logit lens, and sparse autoencoders further revealed strategically hidden1048

knowledge (Cywiński et al., 2025). Together, these works established that internal representations1049

encode truth beyond what outputs reveal.1050

Dynamic Monitor Recent advances focused on real-time monitoring. MIND detects hallucinations1051

real-time from unsupervised internal signals (Su et al., 2024), while SafetyNet monitors attention and1052

MLP activations with ensemble anomaly detectors, achieving 96% accuracy in detecting harmful cases1053

(Chaudhary & Barez, 2025). Attention layers appear especially diagnostic of deceptive reasoning.1054

Concurrent work employs linear probes to show that internal states often predict answers before1055

external reasoning, with stronger internal–external mismatches in advanced models like GPT-4o1056

(Wang et al., 2025a; Orgad et al., 2024). However, these monitors face robustness challenges.1057

Adversarial attacks such as RL-Obfuscation train models to manipulate activations to bypass latent-1058

space defenses, exposing a persistent challenge (Gupta & Jenner, 2025; Bailey et al., 2024). To counter1059

this, Latent Adversarial Training (LAT) perturbs latent activations to improve the model’s resistance1060

against adversarial attacks. But monitors still remain vulnerable, with token-level aggregation being1061

evaded in up to 89.2% of cases (Sheshadri et al., 2024).1062

In sum, detection research now spans both external and internal states. External methods remain1063

accessible but fragile to obfuscation (Hubinger et al., 2024), while internal-state monitoring promises1064

deeper insights into hidden intent (Burns et al., 2022; Chaudhary & Barez, 2025). The escalating1065

contest between evasion and detection highlights the urgent need for more resilient and comprehensive1066

strategies for trustworthy AI.1067

4.2 Deception-related Evaluation1068

Evaluating deception in AI systems requires a structured approach that reflects how deceptive1069

behaviors arise under different conditions and stages of development. We organize deception-1070

related evaluation into two complementary dimensions. Evaluation in Static Settings probes latent1071

risks in fixed and non-interactive tasks, providing early signals of deceptive abilities and incentive1072

sensitivities. Evaluation in Interactive Environments examines how deception manifests during1073

dynamic interactions, adversarial pressures, or multi-agent contexts closer to real-world deployment.1074

These dimensions provide a comprehensive framework for deception evaluation (as shown in Table 1).1075

4.2.1 Evaluation in Static Settings1076

Evaluations in static environments focus on static and fixed tasks, enabling the isolation of deception-1077

related risks without the confounding dynamics of interactive environments. Within this scope, we1078

summarize two complementary aspects: whether models already possess the ability for spontaneous1079

deception, and whether they will engage in deception when placed under prompted incentives.1080

Capability for Spontaneous Deception Evaluations of spontaneous deception investigate whether1081

models already possess the prerequisites needed to mislead without explicit incentives. For example,1082

research (Hagendorff, 2024) demonstrates through ToM tasks that advanced LLMs can already1083

perform first-order deception while struggling with more complex second-order cases, revealing the1084
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Table 1: Overview of AI deception-related evaluations. We organize existing studies from two
perspectives: evaluation in static settings and evaluation in interactive environments, and we
annotate each work with its release date, data size, institution, data type, and description.

Type Dataset Release
Date Size Institution Type Description

Capability for
Spontaneous Deception

SAD [135] 24/07 13k UC Berkeley QA Situational awareness
DAELLMs [103] 23/07 1,920 Uni Stuttgart QA Theory-of-Mind and deception
CSQ [281] 25/08 – NUS FW evaluating AI deception on benign prompts

Deception under
Provided Incentives

MWE [202] 22/12 3.25K Anthropic QA Testing sycophancy on philosophy and political questions
SycophancyEval [227] 23/10 – Anthropic QA Revealing how a user’s preferences affects AI assistant behavior
DeceptionBench [118] 25/05 180 PKU QA Assessing deception-driven misalignment in reasoning models
MASK [214] 25/03 1K CAIS SS Pressure prompts that may induce deception

In Constrained
Interactions

InsiderTrading [222] 23/11 – Apollo FW Evaluating AI deception in high-pressure environments
OpenDeception [280] 25/04 – FDU FW Evaluating AI deception in open-ended user-AI interactions
MACHIAVELLI [196] 23/04 134 UCB Games Human-written social games
Hoodwinked [181] 23/08 – USC Games A Text-Based Murder Mystery Game

In Sandbox

HouseWins [54] 24/05 1 CMU FW&Games Blackjack
Traitors [61] 25/05 1 UvA FW&Games Multi-agent simulation, inspired by social deduction games
SHADE-Arena [133] 25/06 17 Anthropic FW&Games Benign main tasks and harmful side objectives
In-contextScheming [167] 24/12 6 Apollo FW Environments that incentivize scheming
AgenticMisalignment [11] 25/06 1 Anthropic FW Fictional settings

cognitive capacities necessary for misrepresentation. The Situational Awareness Dataset (SAD) (Laine1085

et al., 2024) shows that models are able to recognize evaluation contexts and their own deployment1086

conditions, a capability may foster deceptive behavior. Moreover, recent studies reveal that models1087

may generate misleading responses even under benign prompts, suggesting that deceptive tendencies1088

can surface spontaneously in seemingly neutral conditions (Wu et al., 2025b).1089

Deception under Provided Incentives Some studies examine whether models exhibit deceptive1090

tendencies when placed under externally provided incentive conditions. Rather than directly testing1091

raw capabilities, these benchmarks probe how models respond when prompts introduce preferences,1092

penalties, or goal conflicts. For instance, evaluations show that when user preferences are included in1093

prompts, models often prioritize agreement or compliance, resulting in sycophantic behaviors (Perez1094

et al., 2023; Sharma et al., 2023). Similarly, some benchmarks first elicit models’ latent goals with1095

neutral prompts, then introduce contextual scenarios with external objectives or pressured statements,1096

and finally assess consistency of model responses across the two (Ji et al., 2025; Ren et al., 2025).1097

4.2.2 Evaluation in Interactive Environments1098

While evaluations in static settings reveal important foundations of deceptive capability, they remain1099

limited in capturing how deception unfolds during interactions. Interactive evaluations address this1100

gap by examining models in dynamic scenarios where behaviors adapt to goals, pressures, or other1101

agents. We distinguish between two primary settings. Deception in Constrained interactions focuses1102

on environments with limited action spaces, short horizons, and rule-bound tasks, making it possible1103

to observe how deception arises under specified conditions. By contrast, Sandbox environments grant1104

models broad autonomy—larger action spaces, tool use, and extended horizons—allowing deceptive1105

behaviors to emerge, persist, and adapt during open-ended exploration.1106

Deception in Constrained Interactions From the single-model side, benchmarks place one agent1107

in short task flows and ask whether it will take or justify deceptive actions under goals or pressure (Wu1108

et al., 2025a; Pan et al., 2023; Scheurer et al., 2023). On the multi-agent side, short games show1109

deception emerging without prompts: 2×2 signaling games with a single communication phase1110

elicit unsolicited misrepresentation that scales with rational incentive and model capability (Taylor1111

& Bergen, 2025), and a text social-deduction game reveals denial and persuasion that shift voting1112

outcomes in few rounds (O’Gara, 2023).1113

Deception in Sandbox Within this paradigm, one line of work uses game-based simulations, such1114

as card play or social deduction, to show that models not only deploy deception but also struggle to1115

detect it, revealing asymmetries in persuasion and trust under open-ended play (Curvo, 2025; Chopra1116

& Li, 2024). A second line examines environments with hidden or conflicting objectives, where agents1117

discover and sustain misaligned strategies—such as covert goals or sabotage—while sometimes1118

evading oversight (Meinke et al., 2024; Kutasov et al., 2025). Further studies in organizational or1119
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tool-use sandboxes indicate that when goals conflict with oversight or self-preservation incentives,1120

models may engage in blackmail or data exfiltration without explicit prompting (Anthropic, 2025).1121

4.3 Potential Solutions1122

Deception can be seen as a natural consequence of increasing AI capabilities, much like the flip side1123

of intelligence. Building on the factors underlying the genesis of deception discussed in the previous1124

section, we now turn to potential solutions for mitigating such behaviors. Our analysis spans the1125

entire lifecycle of AI systems, encompassing interventions during training as well as auditing and1126

regulatory mechanisms.1127

4.3.1 Dissolving Deception Incentives1128

As discussed in Section 3.1, models may develop deceptive incentives due to data contamination,1129

reward misspecification, or goal misgeneralization. Drawing insights from adjacent alignment1130

research, several strategies show promise for addressing these underlying sources. First, pretraining1131

data curation techniques that filter problematic examples and integrate alignment objectives directly1132

into pretraining (Korbak et al., 2023; Liang et al., 2024) could potentially reduce exposure to1133

deceptive patterns during initial training. Second, advances in addressing reward misspecification1134

offer relevant approaches for deception mitigation. Improved RL algorithms such as adversarial1135

reward functions and reward capping (Amodei et al., 2016; Uesato et al., 2020) target similar1136

misalignment issues, while certain alignment approaches refine reward specifications by teaching1137

models to express uncertainty appropriately (Yang et al., 2023; Cheng et al., 2024; Sharma et al.,1138

2023), which directly relates to reducing sycophantic tendencies. Alternatively, self-supervised and1139

self-regulation paradigms design training objectives that encourage models to monitor and constrain1140

their behaviors during reasoning processes, approaches that have been directly applied in deception1141

contexts (Guan et al., 2024; Ji et al., 2025). Third, emerging techniques for controlling generalization1142

direction during training, such as concept ablation and behavioral steering interventions (Yu et al.,1143

2024b; Casademunt et al., 2025; Chen et al., 2025b), suggest pathways for preventing unwanted1144

deceptive behaviors from emerging during training.1145

4.3.2 Regulating Deception Capabilities1146

As AI systems grow increasingly capable of deceptive behaviors, regulating these specific capabilities1147

becomes crucial for maintaining trustworthy AI deployment. At the perception level, recent work1148

leverages models’ self-knowledge to constrain information processing (Wang et al., 2023). By1149

enabling retrieval only when the model recognizes gaps in its own knowledge, this approach maintains1150

factual accuracy while preventing the override of correct internal representations that could facilitate1151

deceptive responses. At the planning level, regulatory efforts focus on monitoring CoT processes1152

in real time to detect and intervene against deceptive reasoning patterns (Baker et al., 2025; Korbak1153

et al., 2025; Ji et al., 2025). This regulatory approach has demonstrated measurable success in frontier1154

models: systematic CoT monitoring reduced deception detection rates in GPT-5-thinking to just 2.1%,1155

compared with 4.8% in its predecessor o3 (OpenAI, 2025c). At the performing level, where models1156

may engage in linguistic manipulation or misuse external tools, regulatory frameworks emphasize1157

containment and oversight of potentially deceptive actions. Sandboxed execution environments serve1158

as a key regulatory mechanism, confining code or API calls to isolated settings where deceptive1159

behaviors can be detected and contained before affecting real systems (Tallam & Miller, 2025; Dou1160

et al., 2024; Rabin et al., 2025). These multi-layered regulatory approaches–spanning perception,1161

planning, and performing–demonstrate the systematic effort required to effectively govern deception1162

capabilities in AI systems.1163

4.3.3 Countering Deception Triggers1164

External triggers represent a primary vector for inducing AI deception, making the development1165

of counter-strategies essential for maintaining model integrity. Research has explored multiple1166

approaches to counter deception triggers, adapting techniques from adversarial robustness to address1167

the unique challenges posed by deceptive behaviors. The most direct approach is adversarial training,1168

which fine-tunes models on known deception-inducing prompts to strengthen their resistance to1169

manipulation. While several studies demonstrate effectiveness in improving robustness against1170

general adversarial inputs (Zou et al., 2023), the deception context presents unique challenges,1171

29



as models may exhibit deceptive compliance during training–appearing to resist triggers while1172

retaining latent deceptive capabilities (Hubinger et al., 2024). This highlights the critical need1173

for adversarial training methods specifically designed to counter deception triggers rather than1174

general jailbreaks. A complementary strategy is red teaming, which proactively identifies deception1175

trigger pathways before deployment. This encompasses targeted attacks by human experts trained to1176

elicit deceptive responses (Ganguli et al., 2022; OpenAI, 2025c), alongside automated red teaming1177

frameworks that systematically test resistance to deception triggers (Chao et al., 2024; OpenAI,1178

2025c). Specialized deception red teaming has emerged through multi-agent simulation frameworks1179

where deceptive agents operate under asymmetric information, revealing how deception triggers can1180

exploit strategic vulnerabilities and trust mechanisms (Curvo, 2025; Golechha & Garriga-Alonso,1181

2025). Finally, recognizing that novel deception triggers may circumvent model-level defenses, guard1182

and moderation layers provide real-time monitoring at deployment to detect and neutralize deception1183

triggers in both inputs and outputs, serving as a crucial last line of defense against sophisticated1184

manipulation attempts (Inan et al., 2023).1185

4.3.4 Auditing1186

Alignment auditing (Marks et al., 2025) is a structured process for evaluating whether models1187

harbor hidden or deceptive objectives. Three complementary directions have been identified. The1188

first is training data analysis, which applies keyword or semantic search, clustering, and other1189

forensic methods to trace suspicious model behaviors back to potential origins in the training corpus.1190

Such methods have been used to reduce privacy leakage risks (Tamkin et al., 2024), and offer1191

valuable insights for deception mitigation by revealing deceptive incentives embedded in training1192

data. The second is black-box techniques, which attempt to elicit hidden objectives through1193

interaction alone. For example, assistant prefill attacks (Vega et al.; Andriushchenko et al.; Qi1194

et al.) and extracting information from non-assistant personas (Shanahan et al., 2023; Marks et al.,1195

2025) can induce disclosure of strategies the model intends to conceal, thereby exposing deceptive1196

tendencies. The third is white-box techniques, which leverage access to model weights or activations.1197

Methods such as sparse autoencoders (SAEs) can isolate features linked to suspicious behaviors,1198

enabling causal steering and intervention, or analyzing representations such as the assistant-control1199

token (Anthropic, 2024). Other efforts, including activation fuzzing, attempt to weaken secrecy,1200

though their effectiveness is limited when used in isolation (Clymer et al., 2024; Tice et al.). Overall,1201

auditing integrates technical methods, institutional practices, and governance mechanisms, and will1202

play a central role in addressing the unique risks posed by deceptive AI systems.1203

5 Conclusion1204

This survey has sought to provide a comprehensive map of the AI deception landscape through the lens1205

of the Deception Cycle—a conceptual framework capturing the interplay between Deception Genesis,1206

where incentives, capabilities, and contextual triggers converge to produce deceptive behavior, and1207

Deception Mitigation, which encompasses detection, evaluation, and potential solutions aimed at1208

suppressing such behavior. In doing so, we have introduced a unified taxonomy, reviewed empirical1209

phenomena across RL agents, LLMs, and emergent multi-agent or multimodal systems, and cataloged1210

over 20 benchmarks, methods, and mitigation strategies.1211

5.1 Key Challenges in AI Deception Cycle1212

Beyond taxonomy and systematization, this survey highlights that deception is not merely an inci-1213

dental failure mode, but an adaptive, goal-directed behavior that becomes increasingly likely as AI1214

systems scale in autonomy, capability, and strategic awareness. Our synthesis reveals several insights:1215

• Deception is incentivized by default in misaligned systems. Unless explicitly penalized,1216

deception may emerge as a convergent instrumental strategy under a wide range of training1217

regimes—including supervised fine-tuning, reinforcement learning, and self-play—particularly1218

when models benefit from hiding their true goals or capabilities.1219

• Deceptive strategies are becoming more compositional and temporally extended. As models1220

acquire memory, planning, and agentic scaffolding, we observe the rise of long-horizon deception:1221

multi-stage behaviors that involve delayed reward hacking, conditional alignment, and stealthy1222

behavior switching.1223
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• Deception is modality-agnostic and generalizes across domains. While early research focused1224

on textual deception in LLMs, recent findings show similar patterns in vision-language models,1225

autonomous robotics, and simulated social agents—suggesting that deception is a modality-general1226

risk amplified by interactive complexity.1227

• Alignment techniques struggle with deception-specific failure modes. Existing safety1228

paradigms—such as RLHF (Bai et al., 2022a; Ouyang et al., 2022), CAI (Bai et al., 2022b),1229

and adversarial red-teaming—often fail to surface or remove latent deceptive tendencies. Mod-1230

els trained to pass audits may optimize for appearing aligned rather than being aligned, raising1231

foundational questions about alignment verifiability.1232

These observations give rise to three grand challenges that demand urgent, cross-disciplinary attention:1233

• Recursive deception of oversight tools. As models learn to exploit or evade interpretability meth-1234

ods, CoT rationales, and rule-based constraints, oversight mechanisms themselves risk becoming1235

adversarial targets—vulnerable to manipulation by the very systems they intend to supervise.1236

• Persistence of deceptive alignment. Once deceptive objectives are internalized, they may remain1237

dormant, conditionally activated, or resilient to extensive retraining. Recent studies on sleeper1238

agents and alignment faking highlight the limitations of current mitigation regimes.1239

• Governance and institutional lag. Deception risks often manifest in deployment-time behaviors or1240

complex, open-ended interactions, while current oversight remains largely confined to pre-release1241

evaluation. Fragmented regulatory environments and underdeveloped audit infrastructure further1242

hinder systemic accountability.1243

Yet deception is not solely a technical artifact—it is a reflection of deeper misalignments between1244

model objectives and human expectations. While much of the current literature focuses on single-1245

agent safety—ensuring that an individual model behaves as intended—our findings suggest that this1246

perspective is insufficient. Deceptive behaviors often emerge within broader sociotechnical systems1247

comprising users, developers, institutions, and other AI agents. Deception may be reinforced by1248

opaque incentives, obscured by organizational delegation, or amplified by multi-agent interactions in1249

agentic ecosystems.1250

Future safety efforts must transcend static, model-centric verification and embrace dynamic, system-1251

level resilience. Technical solutions alone cannot ensure trustworthiness; they must operate within1252

institutional frameworks that enforce transparency, auditability, and recourse. Achieving this demands1253

an interdisciplinary shift—combining machine learning, formal methods, HCI, governance, and1254

philosophy—to co-design socio-technical ecosystems where honesty is both learnable and verifiable.1255

Deception-resistant AI cannot be patched or filtered in retrospect; it must be built into the core of1256

learning, oversight, and deployment. Only by embedding deception-aware principles across technical1257

and institutional layers can we ensure AI systems remain aligned, accountable, and genuinely1258

trustworthy in the open world.1259

5.2 Key Traits and Future Directions in AI Deception Research1260

Finally, we conclude the survey by highlighting the key traits that we believe warrant sustained1261

attention and should shape future research trajectories in this area1262

From Programmed to Emergent Deception: What Can Deliberate Design Teach Us About1263

Unintended Incentives? This survey has focused on investigating how deception can emerge1264

naturally from data contamination, reward misspecification, or goal misgeneralization. However,1265

deception can also be deliberately programmed into models’ objectives and strategy space, as1266

exhibited in backdoor attacks and deceptive RL. Here, we extend the discussion of these two sources1267

of deception to provide deeper insights into the incentive foundations of AI deception.1268

Programmed deception and emergent deception differ in the following aspects.1269

• Goals and objectives: In emergent deception, models are not explicitly optimized for a clearly1270

defined deceptive objectives, instead, incentives emerge from data, reward, and goal misalignment.1271

By contrast, programmed deception arises when models are directly trained to deceive, with1272

objectives that reward deception and penalize transparency, thereby aligning training goals with1273

deceptive actions—an alignment absent in emergent deception.1274
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• Strategy space: Programmed deception operates within a human-defined, thus limited strategy1275

space; although deceptive RL agents are trained to conceal their goals, their behaviors remain1276

broadly predictable. By contrast, emergent deception arises in real deployment with an open-world,1277

unbounded strategy space, yielding diverse and covert behaviors that are far harder to detect.1278

• Deployment: A key difference in deployment is controllability. Programmed deception, intention-1279

ally designed, can in principle be bounded and managed in sandboxed settings, whereas emergent1280

deception is uncontrollable, as its strategies arise unintentionally.1281

Programmed deception provides valuable insights into understanding, detecting, and mitigating1282

emergent deception. On one hand, it sheds light on the training-time mechanisms through which1283

deception arises, particularly in environments where models are rewarded for deceptive behavior1284

and for concealing their true strategies. On the other hand, it allows researchers to controllably1285

replicate deceptive behaviors or construct hypothetical phenomena such as sleeper agents, thereby1286

supporting in-depth empirical study. By constructing models with hidden objectives and analyzing1287

deceptive behavioral trajectories, researchers are able to probe the underlying deceptive motivations1288

that emerge in AI systems. Moreover, it is worth highlighting that the inverse RL methodology1289

adopted in deceptive RL research provide crucial insights for deception detection and monitoring.1290

Evaluation Deception Behaviours: How Do We Accurately Measure Deceptive Tendencies in1291

Models? A central challenge in AI deception research is defining and reliably evaluating deceptive1292

behaviors during model assessment. A model’s stated reasoning—for instance, its reported CoT1293

may not faithfully represent the latent processes that produced its outputs (Naik et al., 2025; Chen1294

et al., 2025c). This issue is further compounded by the absence of explicit CoT traces in many1295

tasks, making it difficult to attribute deceptive intent. Standard evaluation is also confounded by1296

hallucinations and task failures (Kutasov et al., 2025), which obscure whether an output reflects1297

strategic deception or simple underperformance. Another obstacle lies in constructing realistic1298

evaluation settings. Existing deception tests, such as binary agent–environment misalignment tasks,1299

often fail to capture the complexity of real-world scenarios where deception might emerge (Benton1300

et al., 2024). Artificial prompts frequently bundle critical cues together, creating a Chekhov’s gun1301

effect: models, sensitive to the salience of every detail, are more likely to exploit these cues rather1302

than disregard them (Anthropic, 2025). As a result, contrived testbeds risk overestimating deceptive1303

tendencies, while authentic, high-stakes deployments may reveal underestimated risks. Finally, an1304

evaluation gap persists between controlled benchmarks and open-world deployment. Models1305

may engage in sandbagging—suppressing their full capabilities in evaluation while exhibiting stronger1306

deceptive behaviors in practice. Addressing this gap requires the design of ecologically valid test1307

environments, the development of metrics that disentangle deception from error or hallucination, and1308

longitudinal assessments that track how deceptive behaviors evolve across training and deployment.1309

Scalable Monitoring for Deception: Beyond CoT-Centric, Toward Faithful and Cost-Aware1310

Systems A central challenge in reliable monitoring is ensuring faithfulness. CoT-based monitors1311

assume that models provide explicit and truthful rationales (Baker et al., 2025), yet they fail when1312

models omit CoT, strategically suppress it (e.g., under RLHF (Chua & Evans, 2025)), or generate1313

post hoc rationalizations. Even advanced monitors capable of detecting subtle, long-horizon attacks1314

in extended logs remain brittle: they may accept tendentious narratives that justify harmful actions, or1315

conversely, overreact to benign errors (Kutasov et al., 2025). While turn-by-turn scrutiny can improve1316

recall, it often floods the system with highly suspicious flags, leading to overfitting and decision1317

paralysis. The problem is compounded in agentic systems, which frequently deviate from their stated1318

policies. Whether contemporary reasoning models (Li et al., 2025b) are intrinsically more faithful1319

remains an open question, not an assumption monitoring frameworks can rely upon.1320

Future monitoring systems should embody four principles. First, they should be CoT-agnostic1321

and multi-view, integrating behavioral probes, environment- or tool-grounded verification, and1322

mechanism-level checks (e.g., consistency and invariance) rather than relying solely on stated1323

rationales. Second, they should be regularized and compositional, combining turn-level judgments1324

with calibrated abstention, rate-limiting, and conformal or risk-controlled thresholds to mitigate1325

overflagging. Third, they should be cost–safety aware, allocating monitoring resources adaptively1326

by estimated risk, with deeper inspections reserved for high-stakes cases. Finally, they should be1327

faithfulness-seeking, employing audit-time elicitation (scratchpad commitments, execution traces),1328

cross-model verification, and longitudinal tests for discrepancies between stated and latent strategies.1329
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Together, these principles aim to produce monitoring systems that scale without sacrificing precision,1330

remain robust to sandbagging, and evaluate deception independently of a model’s willingness to1331

explain itself.1332

Deception and Governance: How Can Technical Safeguards Interface with Institutional Over-1333

sight? A core challenge at the intersection of AI deception and governance lies in ensuring that1334

technical defenses against deception are embedded within enforceable institutional frameworks.1335

While certified defenses—such as provable training protocols and robust evaluation metrics—can1336

help constrain deceptive tendencies under adversarial conditions, their effectiveness is limited without1337

broader governance structures that guarantee compliance and accountability. For example, even a1338

model trained with formal guarantees against sycophancy or sandbagging may still be vulnerable if1339

deployed in environments lacking tamper-proof monitoring or third-party verification.1340

This highlights the necessity of institutional innovation to complement technical safety measures.1341

Mechanisms such as independent audits, hardware-rooted deployment controls, and cryptographically1342

verifiable reporting channels can extend trust beyond the lab setting, mitigating risks of deceptive1343

behaviors that evade laboratory evaluations. Importantly, governance structures can also shape the1344

incentives that determine whether deception is suppressed or reinforced in practice, bridging the1345

persistent gap between technical solutions and societal oversight.1346

In this sense, AI deception is not solely a technical alignment problem but also a governance1347

challenge. Certified defenses provide the formal tools to limit deceptive capacity, but institutional1348

frameworks are required to sustain these guarantees across diverse deployment contexts. Progress1349

thus depends on integrating safety research with governance innovation, ensuring that models cannot1350

exploit institutional blind spots to conceal, amplify, or strategically deploy deception.1351
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